Deep-learning of parametric partial differential equations from sparse and noisy data

Data-driven methods have recently made great progress in the discovery of partial differential equations (PDEs) from spatial-temporal data. However, several challenges remain to be solved, including sparse noisy data, incomplete library, and spatially or temporally varying coefficients. In this work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-03, Vol.33 (3)
Hauptverfasser: Xu, Hao, Zhang, Dongxiao, Zeng, Junsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!