A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes
We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity an...
Gespeichert in:
Veröffentlicht in: | J.Comput.Phys 2021-04, Vol.431, p.110145, Article 110145 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110145 |
container_title | J.Comput.Phys |
container_volume | 431 |
creator | Beyer, Florian LeFloch, Philippe G. |
description | We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity and the evolution is performed from the singularity hypersurface. We approximate the singular Cauchy problem of Fuchsian type by a sequence of regular Cauchy problems, which we next discretize by pseudo-spectral and Runge-Kutta techniques. Our main contribution is a detailed analysis of the numerical error which has two distinct sources, and our main proposal here is to keep in balance the errors arising at the continuum and at the discrete levels of approximation. We present numerical experiments which strongly support our theoretical conclusions. This strategy is finally applied to compressible fluid flows evolving on a Kasner spacetime, and we numerically demonstrate the nonlinear stability of such flows, at least in the so-called sub-critical regime identified earlier by the authors. |
doi_str_mv | 10.1016/j.jcp.2021.110145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2505419318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121000371</els_id><sourcerecordid>2505419318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-35ca577808709199cdecd5dcdb3dc211f8949117ff41ff9ab0b22bb427b9a3463</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gsMTEk-JykicVUVZQiVWIBMVqOY7eOkri1kyL-PQ5BjCx30t17n-4eQrdAYiCweKjjWh5iSijEEAZpdoZmQBiJaA6LczQjYRMxxuASXXlfE0KKLC1m6GOJu6FVzkjRYNHsrDP9vsXaOrwe5N4b0WF1HERvbOex6Cqsm8GM1X56bDssrW9tY3c_AH8QUvWmVf4aXWjReHXz2-foff30ttpE29fnl9VyG8kkY32UZFJkeV6QIicMGJOVklVWyapMKkkBdMFSBpBrnYLWTJSkpLQsU5qXTCTpIpmj-4m7Fw0_ONMK98WtMHyz3PJxRmhAFzQ_QdDeTdqDs8dB-Z7XdnBdOI_TjGQpsASKoIJJJZ313in9hwXCx6x5zUPWfMyaT1kHz-PkUeHVk1GOe2lUJ1VlnJI9r6z5x_0NV56GRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505419318</pqid></control><display><type>article</type><title>A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Beyer, Florian ; LeFloch, Philippe G.</creator><creatorcontrib>Beyer, Florian ; LeFloch, Philippe G.</creatorcontrib><description>We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity and the evolution is performed from the singularity hypersurface. We approximate the singular Cauchy problem of Fuchsian type by a sequence of regular Cauchy problems, which we next discretize by pseudo-spectral and Runge-Kutta techniques. Our main contribution is a detailed analysis of the numerical error which has two distinct sources, and our main proposal here is to keep in balance the errors arising at the continuum and at the discrete levels of approximation. We present numerical experiments which strongly support our theoretical conclusions. This strategy is finally applied to compressible fluid flows evolving on a Kasner spacetime, and we numerically demonstrate the nonlinear stability of such flows, at least in the so-called sub-critical regime identified earlier by the authors.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110145</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Asymptotic behavior ; Boundary value problems ; Cauchy problems ; Compressible fluids ; Computational fluid dynamics ; Computational physics ; Computer Science ; Error analysis ; Evolution ; Flow control ; Fluid flow ; Fluids on Kasner ; Fuchsian equations ; General relativity ; General Relativity and Quantum Cosmology ; Hyperspaces ; Mathematical analysis ; Mathematical Physics ; Method of lines ; Numerical analysis ; Numerical approximation ; Physics ; Runge-Kutta method ; Singularities ; Spacetime</subject><ispartof>J.Comput.Phys, 2021-04, Vol.431, p.110145, Article 110145</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-35ca577808709199cdecd5dcdb3dc211f8949117ff41ff9ab0b22bb427b9a3463</citedby><cites>FETCH-LOGICAL-c359t-35ca577808709199cdecd5dcdb3dc211f8949117ff41ff9ab0b22bb427b9a3463</cites><orcidid>0000-0002-9546-0784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110145$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02870827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beyer, Florian</creatorcontrib><creatorcontrib>LeFloch, Philippe G.</creatorcontrib><title>A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes</title><title>J.Comput.Phys</title><description>We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity and the evolution is performed from the singularity hypersurface. We approximate the singular Cauchy problem of Fuchsian type by a sequence of regular Cauchy problems, which we next discretize by pseudo-spectral and Runge-Kutta techniques. Our main contribution is a detailed analysis of the numerical error which has two distinct sources, and our main proposal here is to keep in balance the errors arising at the continuum and at the discrete levels of approximation. We present numerical experiments which strongly support our theoretical conclusions. This strategy is finally applied to compressible fluid flows evolving on a Kasner spacetime, and we numerically demonstrate the nonlinear stability of such flows, at least in the so-called sub-critical regime identified earlier by the authors.</description><subject>Algorithms</subject><subject>Asymptotic behavior</subject><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Compressible fluids</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer Science</subject><subject>Error analysis</subject><subject>Evolution</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Fluids on Kasner</subject><subject>Fuchsian equations</subject><subject>General relativity</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Hyperspaces</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Method of lines</subject><subject>Numerical analysis</subject><subject>Numerical approximation</subject><subject>Physics</subject><subject>Runge-Kutta method</subject><subject>Singularities</subject><subject>Spacetime</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9gsMTEk-JykicVUVZQiVWIBMVqOY7eOkri1kyL-PQ5BjCx30t17n-4eQrdAYiCweKjjWh5iSijEEAZpdoZmQBiJaA6LczQjYRMxxuASXXlfE0KKLC1m6GOJu6FVzkjRYNHsrDP9vsXaOrwe5N4b0WF1HERvbOex6Cqsm8GM1X56bDssrW9tY3c_AH8QUvWmVf4aXWjReHXz2-foff30ttpE29fnl9VyG8kkY32UZFJkeV6QIicMGJOVklVWyapMKkkBdMFSBpBrnYLWTJSkpLQsU5qXTCTpIpmj-4m7Fw0_ONMK98WtMHyz3PJxRmhAFzQ_QdDeTdqDs8dB-Z7XdnBdOI_TjGQpsASKoIJJJZ313in9hwXCx6x5zUPWfMyaT1kHz-PkUeHVk1GOe2lUJ1VlnJI9r6z5x_0NV56GRA</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Beyer, Florian</creator><creator>LeFloch, Philippe G.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9546-0784</orcidid></search><sort><creationdate>20210415</creationdate><title>A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes</title><author>Beyer, Florian ; LeFloch, Philippe G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-35ca577808709199cdecd5dcdb3dc211f8949117ff41ff9ab0b22bb427b9a3463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Asymptotic behavior</topic><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Compressible fluids</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer Science</topic><topic>Error analysis</topic><topic>Evolution</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Fluids on Kasner</topic><topic>Fuchsian equations</topic><topic>General relativity</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Hyperspaces</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Method of lines</topic><topic>Numerical analysis</topic><topic>Numerical approximation</topic><topic>Physics</topic><topic>Runge-Kutta method</topic><topic>Singularities</topic><topic>Spacetime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyer, Florian</creatorcontrib><creatorcontrib>LeFloch, Philippe G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>J.Comput.Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyer, Florian</au><au>LeFloch, Philippe G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes</atitle><jtitle>J.Comput.Phys</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>431</volume><spage>110145</spage><pages>110145-</pages><artnum>110145</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity and the evolution is performed from the singularity hypersurface. We approximate the singular Cauchy problem of Fuchsian type by a sequence of regular Cauchy problems, which we next discretize by pseudo-spectral and Runge-Kutta techniques. Our main contribution is a detailed analysis of the numerical error which has two distinct sources, and our main proposal here is to keep in balance the errors arising at the continuum and at the discrete levels of approximation. We present numerical experiments which strongly support our theoretical conclusions. This strategy is finally applied to compressible fluid flows evolving on a Kasner spacetime, and we numerically demonstrate the nonlinear stability of such flows, at least in the so-called sub-critical regime identified earlier by the authors.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110145</doi><orcidid>https://orcid.org/0000-0002-9546-0784</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | J.Comput.Phys, 2021-04, Vol.431, p.110145, Article 110145 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2505419318 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Asymptotic behavior Boundary value problems Cauchy problems Compressible fluids Computational fluid dynamics Computational physics Computer Science Error analysis Evolution Flow control Fluid flow Fluids on Kasner Fuchsian equations General relativity General Relativity and Quantum Cosmology Hyperspaces Mathematical analysis Mathematical Physics Method of lines Numerical analysis Numerical approximation Physics Runge-Kutta method Singularities Spacetime |
title | A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20algorithm%20for%20Fuchsian%20equations%20and%20fluid%20flows%20on%20cosmological%20spacetimes&rft.jtitle=J.Comput.Phys&rft.au=Beyer,%20Florian&rft.date=2021-04-15&rft.volume=431&rft.spage=110145&rft.pages=110145-&rft.artnum=110145&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110145&rft_dat=%3Cproquest_hal_p%3E2505419318%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505419318&rft_id=info:pmid/&rft_els_id=S0021999121000371&rfr_iscdi=true |