A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes

We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J.Comput.Phys 2021-04, Vol.431, p.110145, Article 110145
Hauptverfasser: Beyer, Florian, LeFloch, Philippe G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110145
container_title J.Comput.Phys
container_volume 431
creator Beyer, Florian
LeFloch, Philippe G.
description We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity and the evolution is performed from the singularity hypersurface. We approximate the singular Cauchy problem of Fuchsian type by a sequence of regular Cauchy problems, which we next discretize by pseudo-spectral and Runge-Kutta techniques. Our main contribution is a detailed analysis of the numerical error which has two distinct sources, and our main proposal here is to keep in balance the errors arising at the continuum and at the discrete levels of approximation. We present numerical experiments which strongly support our theoretical conclusions. This strategy is finally applied to compressible fluid flows evolving on a Kasner spacetime, and we numerically demonstrate the nonlinear stability of such flows, at least in the so-called sub-critical regime identified earlier by the authors.
doi_str_mv 10.1016/j.jcp.2021.110145
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2505419318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121000371</els_id><sourcerecordid>2505419318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-35ca577808709199cdecd5dcdb3dc211f8949117ff41ff9ab0b22bb427b9a3463</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gsMTEk-JykicVUVZQiVWIBMVqOY7eOkri1kyL-PQ5BjCx30t17n-4eQrdAYiCweKjjWh5iSijEEAZpdoZmQBiJaA6LczQjYRMxxuASXXlfE0KKLC1m6GOJu6FVzkjRYNHsrDP9vsXaOrwe5N4b0WF1HERvbOex6Cqsm8GM1X56bDssrW9tY3c_AH8QUvWmVf4aXWjReHXz2-foff30ttpE29fnl9VyG8kkY32UZFJkeV6QIicMGJOVklVWyapMKkkBdMFSBpBrnYLWTJSkpLQsU5qXTCTpIpmj-4m7Fw0_ONMK98WtMHyz3PJxRmhAFzQ_QdDeTdqDs8dB-Z7XdnBdOI_TjGQpsASKoIJJJZ313in9hwXCx6x5zUPWfMyaT1kHz-PkUeHVk1GOe2lUJ1VlnJI9r6z5x_0NV56GRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505419318</pqid></control><display><type>article</type><title>A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Beyer, Florian ; LeFloch, Philippe G.</creator><creatorcontrib>Beyer, Florian ; LeFloch, Philippe G.</creatorcontrib><description>We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity and the evolution is performed from the singularity hypersurface. We approximate the singular Cauchy problem of Fuchsian type by a sequence of regular Cauchy problems, which we next discretize by pseudo-spectral and Runge-Kutta techniques. Our main contribution is a detailed analysis of the numerical error which has two distinct sources, and our main proposal here is to keep in balance the errors arising at the continuum and at the discrete levels of approximation. We present numerical experiments which strongly support our theoretical conclusions. This strategy is finally applied to compressible fluid flows evolving on a Kasner spacetime, and we numerically demonstrate the nonlinear stability of such flows, at least in the so-called sub-critical regime identified earlier by the authors.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110145</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Asymptotic behavior ; Boundary value problems ; Cauchy problems ; Compressible fluids ; Computational fluid dynamics ; Computational physics ; Computer Science ; Error analysis ; Evolution ; Flow control ; Fluid flow ; Fluids on Kasner ; Fuchsian equations ; General relativity ; General Relativity and Quantum Cosmology ; Hyperspaces ; Mathematical analysis ; Mathematical Physics ; Method of lines ; Numerical analysis ; Numerical approximation ; Physics ; Runge-Kutta method ; Singularities ; Spacetime</subject><ispartof>J.Comput.Phys, 2021-04, Vol.431, p.110145, Article 110145</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-35ca577808709199cdecd5dcdb3dc211f8949117ff41ff9ab0b22bb427b9a3463</citedby><cites>FETCH-LOGICAL-c359t-35ca577808709199cdecd5dcdb3dc211f8949117ff41ff9ab0b22bb427b9a3463</cites><orcidid>0000-0002-9546-0784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2021.110145$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02870827$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beyer, Florian</creatorcontrib><creatorcontrib>LeFloch, Philippe G.</creatorcontrib><title>A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes</title><title>J.Comput.Phys</title><description>We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity and the evolution is performed from the singularity hypersurface. We approximate the singular Cauchy problem of Fuchsian type by a sequence of regular Cauchy problems, which we next discretize by pseudo-spectral and Runge-Kutta techniques. Our main contribution is a detailed analysis of the numerical error which has two distinct sources, and our main proposal here is to keep in balance the errors arising at the continuum and at the discrete levels of approximation. We present numerical experiments which strongly support our theoretical conclusions. This strategy is finally applied to compressible fluid flows evolving on a Kasner spacetime, and we numerically demonstrate the nonlinear stability of such flows, at least in the so-called sub-critical regime identified earlier by the authors.</description><subject>Algorithms</subject><subject>Asymptotic behavior</subject><subject>Boundary value problems</subject><subject>Cauchy problems</subject><subject>Compressible fluids</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer Science</subject><subject>Error analysis</subject><subject>Evolution</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Fluids on Kasner</subject><subject>Fuchsian equations</subject><subject>General relativity</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Hyperspaces</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Method of lines</subject><subject>Numerical analysis</subject><subject>Numerical approximation</subject><subject>Physics</subject><subject>Runge-Kutta method</subject><subject>Singularities</subject><subject>Spacetime</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9gsMTEk-JykicVUVZQiVWIBMVqOY7eOkri1kyL-PQ5BjCx30t17n-4eQrdAYiCweKjjWh5iSijEEAZpdoZmQBiJaA6LczQjYRMxxuASXXlfE0KKLC1m6GOJu6FVzkjRYNHsrDP9vsXaOrwe5N4b0WF1HERvbOex6Cqsm8GM1X56bDssrW9tY3c_AH8QUvWmVf4aXWjReHXz2-foff30ttpE29fnl9VyG8kkY32UZFJkeV6QIicMGJOVklVWyapMKkkBdMFSBpBrnYLWTJSkpLQsU5qXTCTpIpmj-4m7Fw0_ONMK98WtMHyz3PJxRmhAFzQ_QdDeTdqDs8dB-Z7XdnBdOI_TjGQpsASKoIJJJZ313in9hwXCx6x5zUPWfMyaT1kHz-PkUeHVk1GOe2lUJ1VlnJI9r6z5x_0NV56GRA</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Beyer, Florian</creator><creator>LeFloch, Philippe G.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9546-0784</orcidid></search><sort><creationdate>20210415</creationdate><title>A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes</title><author>Beyer, Florian ; LeFloch, Philippe G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-35ca577808709199cdecd5dcdb3dc211f8949117ff41ff9ab0b22bb427b9a3463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Asymptotic behavior</topic><topic>Boundary value problems</topic><topic>Cauchy problems</topic><topic>Compressible fluids</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer Science</topic><topic>Error analysis</topic><topic>Evolution</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Fluids on Kasner</topic><topic>Fuchsian equations</topic><topic>General relativity</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Hyperspaces</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Method of lines</topic><topic>Numerical analysis</topic><topic>Numerical approximation</topic><topic>Physics</topic><topic>Runge-Kutta method</topic><topic>Singularities</topic><topic>Spacetime</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beyer, Florian</creatorcontrib><creatorcontrib>LeFloch, Philippe G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>J.Comput.Phys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beyer, Florian</au><au>LeFloch, Philippe G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes</atitle><jtitle>J.Comput.Phys</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>431</volume><spage>110145</spage><pages>110145-</pages><artnum>110145</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We consider a class of Fuchsian equations that, for instance, describes the evolution of compressible fluid flows on a cosmological spacetime. Using the method of lines, we introduce a numerical algorithm for the singular initial value problem when data are imposed on the cosmological singularity and the evolution is performed from the singularity hypersurface. We approximate the singular Cauchy problem of Fuchsian type by a sequence of regular Cauchy problems, which we next discretize by pseudo-spectral and Runge-Kutta techniques. Our main contribution is a detailed analysis of the numerical error which has two distinct sources, and our main proposal here is to keep in balance the errors arising at the continuum and at the discrete levels of approximation. We present numerical experiments which strongly support our theoretical conclusions. This strategy is finally applied to compressible fluid flows evolving on a Kasner spacetime, and we numerically demonstrate the nonlinear stability of such flows, at least in the so-called sub-critical regime identified earlier by the authors.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110145</doi><orcidid>https://orcid.org/0000-0002-9546-0784</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof J.Comput.Phys, 2021-04, Vol.431, p.110145, Article 110145
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2505419318
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Asymptotic behavior
Boundary value problems
Cauchy problems
Compressible fluids
Computational fluid dynamics
Computational physics
Computer Science
Error analysis
Evolution
Flow control
Fluid flow
Fluids on Kasner
Fuchsian equations
General relativity
General Relativity and Quantum Cosmology
Hyperspaces
Mathematical analysis
Mathematical Physics
Method of lines
Numerical analysis
Numerical approximation
Physics
Runge-Kutta method
Singularities
Spacetime
title A numerical algorithm for Fuchsian equations and fluid flows on cosmological spacetimes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A17%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20algorithm%20for%20Fuchsian%20equations%20and%20fluid%20flows%20on%20cosmological%20spacetimes&rft.jtitle=J.Comput.Phys&rft.au=Beyer,%20Florian&rft.date=2021-04-15&rft.volume=431&rft.spage=110145&rft.pages=110145-&rft.artnum=110145&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110145&rft_dat=%3Cproquest_hal_p%3E2505419318%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505419318&rft_id=info:pmid/&rft_els_id=S0021999121000371&rfr_iscdi=true