Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys

•Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site. Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA70...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2020-11, Vol.140, p.105790, Article 105790
Hauptverfasser: Cauthen, C., Anderson, K.V., Avery, D.Z., Baker, A., Williamson, C.J., Daniewicz, S.R., Jordon, J.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105790
container_title International journal of fatigue
container_volume 140
creator Cauthen, C.
Anderson, K.V.
Avery, D.Z.
Baker, A.
Williamson, C.J.
Daniewicz, S.R.
Jordon, J.B.
description •Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site. Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA7065 and AA2099, were quantified using a surface replication process for the first time. In addition, scanning electron microscopy analysis revealed that for AA7065, crack initiation was caused by either voids or intermetallic particles. Whereas, for the AA2099, crack initiation was caused by persistent slip bands and intermetallic particles. From electron backscatter diffraction results, the grains at the crack initiation site for the AA7065 exhibited high misorientation boundaries, while the grains at the crack initiation sites for the AA2099 exhibited both high and low misorientation boundaries.
doi_str_mv 10.1016/j.ijfatigue.2020.105790
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505416576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112320303212</els_id><sourcerecordid>2505416576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-802447cba7ea563175bb6eb809320f461d697340d00ed5748de37129ca8351633</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3YIlzyvoVJ8eqooBUiQucLddxW4fEKXYC6t_jKBVXTrPanZnVDEL3BBYESP5YL1y9073bD3ZBgY5bIUu4QDNSyDJjXNBLNAPCaUYIZdfoJsYaAEqQYoba9STFJmjzif1gGps2ncfaV7h1JnSxD4Pph6Cb5oRjm-BM3ofupz_g1pqD9i62ETuPD25_wEli_T7ddDO0zg9tGpruFG_R1U430d6dcY4-1k_vq5ds8_b8ulpuMsM467MCKOfSbLW0WuSMSLHd5nZbQMko7HhOqryUjEMFYCsheVFZJgktjS6YIDljc_Qw-R5D9zXY2Ku6G4JPLxUVIDjJhcwTS06sMWQMdqeOwbU6nBQBNXaravXXrRq7VVO3SbmclDaF-HY2qGic9cZWLljTq6pz_3r8AsYxh-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505416576</pqid></control><display><type>article</type><title>Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Cauthen, C. ; Anderson, K.V. ; Avery, D.Z. ; Baker, A. ; Williamson, C.J. ; Daniewicz, S.R. ; Jordon, J.B.</creator><creatorcontrib>Cauthen, C. ; Anderson, K.V. ; Avery, D.Z. ; Baker, A. ; Williamson, C.J. ; Daniewicz, S.R. ; Jordon, J.B.</creatorcontrib><description>•Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site. Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA7065 and AA2099, were quantified using a surface replication process for the first time. In addition, scanning electron microscopy analysis revealed that for AA7065, crack initiation was caused by either voids or intermetallic particles. Whereas, for the AA2099, crack initiation was caused by persistent slip bands and intermetallic particles. From electron backscatter diffraction results, the grains at the crack initiation site for the AA7065 exhibited high misorientation boundaries, while the grains at the crack initiation sites for the AA2099 exhibited both high and low misorientation boundaries.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2020.105790</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Boundaries ; Crack formation ; Crack initiation ; Crack propagation ; Edge dislocations ; Electron backscatter diffraction ; Fatigue crack growth ; Fatigue failure ; Fracture mechanics ; Grains ; High strength alloys ; Materials fatigue ; Misalignment ; Nucleation ; Slip bands ; Small cracks ; Surface replication</subject><ispartof>International journal of fatigue, 2020-11, Vol.140, p.105790, Article 105790</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-802447cba7ea563175bb6eb809320f461d697340d00ed5748de37129ca8351633</citedby><cites>FETCH-LOGICAL-c343t-802447cba7ea563175bb6eb809320f461d697340d00ed5748de37129ca8351633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2020.105790$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Cauthen, C.</creatorcontrib><creatorcontrib>Anderson, K.V.</creatorcontrib><creatorcontrib>Avery, D.Z.</creatorcontrib><creatorcontrib>Baker, A.</creatorcontrib><creatorcontrib>Williamson, C.J.</creatorcontrib><creatorcontrib>Daniewicz, S.R.</creatorcontrib><creatorcontrib>Jordon, J.B.</creatorcontrib><title>Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys</title><title>International journal of fatigue</title><description>•Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site. Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA7065 and AA2099, were quantified using a surface replication process for the first time. In addition, scanning electron microscopy analysis revealed that for AA7065, crack initiation was caused by either voids or intermetallic particles. Whereas, for the AA2099, crack initiation was caused by persistent slip bands and intermetallic particles. From electron backscatter diffraction results, the grains at the crack initiation site for the AA7065 exhibited high misorientation boundaries, while the grains at the crack initiation sites for the AA2099 exhibited both high and low misorientation boundaries.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Boundaries</subject><subject>Crack formation</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Edge dislocations</subject><subject>Electron backscatter diffraction</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Grains</subject><subject>High strength alloys</subject><subject>Materials fatigue</subject><subject>Misalignment</subject><subject>Nucleation</subject><subject>Slip bands</subject><subject>Small cracks</subject><subject>Surface replication</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI3YIlzyvoVJ8eqooBUiQucLddxW4fEKXYC6t_jKBVXTrPanZnVDEL3BBYESP5YL1y9073bD3ZBgY5bIUu4QDNSyDJjXNBLNAPCaUYIZdfoJsYaAEqQYoba9STFJmjzif1gGps2ncfaV7h1JnSxD4Pph6Cb5oRjm-BM3ofupz_g1pqD9i62ETuPD25_wEli_T7ddDO0zg9tGpruFG_R1U430d6dcY4-1k_vq5ds8_b8ulpuMsM467MCKOfSbLW0WuSMSLHd5nZbQMko7HhOqryUjEMFYCsheVFZJgktjS6YIDljc_Qw-R5D9zXY2Ku6G4JPLxUVIDjJhcwTS06sMWQMdqeOwbU6nBQBNXaravXXrRq7VVO3SbmclDaF-HY2qGic9cZWLljTq6pz_3r8AsYxh-s</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Cauthen, C.</creator><creator>Anderson, K.V.</creator><creator>Avery, D.Z.</creator><creator>Baker, A.</creator><creator>Williamson, C.J.</creator><creator>Daniewicz, S.R.</creator><creator>Jordon, J.B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202011</creationdate><title>Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys</title><author>Cauthen, C. ; Anderson, K.V. ; Avery, D.Z. ; Baker, A. ; Williamson, C.J. ; Daniewicz, S.R. ; Jordon, J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-802447cba7ea563175bb6eb809320f461d697340d00ed5748de37129ca8351633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Boundaries</topic><topic>Crack formation</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Edge dislocations</topic><topic>Electron backscatter diffraction</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Grains</topic><topic>High strength alloys</topic><topic>Materials fatigue</topic><topic>Misalignment</topic><topic>Nucleation</topic><topic>Slip bands</topic><topic>Small cracks</topic><topic>Surface replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cauthen, C.</creatorcontrib><creatorcontrib>Anderson, K.V.</creatorcontrib><creatorcontrib>Avery, D.Z.</creatorcontrib><creatorcontrib>Baker, A.</creatorcontrib><creatorcontrib>Williamson, C.J.</creatorcontrib><creatorcontrib>Daniewicz, S.R.</creatorcontrib><creatorcontrib>Jordon, J.B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cauthen, C.</au><au>Anderson, K.V.</au><au>Avery, D.Z.</au><au>Baker, A.</au><au>Williamson, C.J.</au><au>Daniewicz, S.R.</au><au>Jordon, J.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys</atitle><jtitle>International journal of fatigue</jtitle><date>2020-11</date><risdate>2020</risdate><volume>140</volume><spage>105790</spage><pages>105790-</pages><artnum>105790</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site. Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA7065 and AA2099, were quantified using a surface replication process for the first time. In addition, scanning electron microscopy analysis revealed that for AA7065, crack initiation was caused by either voids or intermetallic particles. Whereas, for the AA2099, crack initiation was caused by persistent slip bands and intermetallic particles. From electron backscatter diffraction results, the grains at the crack initiation site for the AA7065 exhibited high misorientation boundaries, while the grains at the crack initiation sites for the AA2099 exhibited both high and low misorientation boundaries.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2020.105790</doi></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2020-11, Vol.140, p.105790, Article 105790
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2505416576
source Elsevier ScienceDirect Journals
subjects Aluminum alloys
Aluminum base alloys
Boundaries
Crack formation
Crack initiation
Crack propagation
Edge dislocations
Electron backscatter diffraction
Fatigue crack growth
Fatigue failure
Fracture mechanics
Grains
High strength alloys
Materials fatigue
Misalignment
Nucleation
Slip bands
Small cracks
Surface replication
title Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20nucleation%20and%20microstructurally%20small%20crack%20growth%20mechanisms%20in%20high%20strength%20aluminum%20alloys&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Cauthen,%20C.&rft.date=2020-11&rft.volume=140&rft.spage=105790&rft.pages=105790-&rft.artnum=105790&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2020.105790&rft_dat=%3Cproquest_cross%3E2505416576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505416576&rft_id=info:pmid/&rft_els_id=S0142112320303212&rfr_iscdi=true