Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys
•Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site. Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA70...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2020-11, Vol.140, p.105790, Article 105790 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105790 |
container_title | International journal of fatigue |
container_volume | 140 |
creator | Cauthen, C. Anderson, K.V. Avery, D.Z. Baker, A. Williamson, C.J. Daniewicz, S.R. Jordon, J.B. |
description | •Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site.
Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA7065 and AA2099, were quantified using a surface replication process for the first time. In addition, scanning electron microscopy analysis revealed that for AA7065, crack initiation was caused by either voids or intermetallic particles. Whereas, for the AA2099, crack initiation was caused by persistent slip bands and intermetallic particles. From electron backscatter diffraction results, the grains at the crack initiation site for the AA7065 exhibited high misorientation boundaries, while the grains at the crack initiation sites for the AA2099 exhibited both high and low misorientation boundaries. |
doi_str_mv | 10.1016/j.ijfatigue.2020.105790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505416576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112320303212</els_id><sourcerecordid>2505416576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-802447cba7ea563175bb6eb809320f461d697340d00ed5748de37129ca8351633</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3YIlzyvoVJ8eqooBUiQucLddxW4fEKXYC6t_jKBVXTrPanZnVDEL3BBYESP5YL1y9073bD3ZBgY5bIUu4QDNSyDJjXNBLNAPCaUYIZdfoJsYaAEqQYoba9STFJmjzif1gGps2ncfaV7h1JnSxD4Pph6Cb5oRjm-BM3ofupz_g1pqD9i62ETuPD25_wEli_T7ddDO0zg9tGpruFG_R1U430d6dcY4-1k_vq5ds8_b8ulpuMsM467MCKOfSbLW0WuSMSLHd5nZbQMko7HhOqryUjEMFYCsheVFZJgktjS6YIDljc_Qw-R5D9zXY2Ku6G4JPLxUVIDjJhcwTS06sMWQMdqeOwbU6nBQBNXaravXXrRq7VVO3SbmclDaF-HY2qGic9cZWLljTq6pz_3r8AsYxh-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505416576</pqid></control><display><type>article</type><title>Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Cauthen, C. ; Anderson, K.V. ; Avery, D.Z. ; Baker, A. ; Williamson, C.J. ; Daniewicz, S.R. ; Jordon, J.B.</creator><creatorcontrib>Cauthen, C. ; Anderson, K.V. ; Avery, D.Z. ; Baker, A. ; Williamson, C.J. ; Daniewicz, S.R. ; Jordon, J.B.</creatorcontrib><description>•Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site.
Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA7065 and AA2099, were quantified using a surface replication process for the first time. In addition, scanning electron microscopy analysis revealed that for AA7065, crack initiation was caused by either voids or intermetallic particles. Whereas, for the AA2099, crack initiation was caused by persistent slip bands and intermetallic particles. From electron backscatter diffraction results, the grains at the crack initiation site for the AA7065 exhibited high misorientation boundaries, while the grains at the crack initiation sites for the AA2099 exhibited both high and low misorientation boundaries.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2020.105790</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Boundaries ; Crack formation ; Crack initiation ; Crack propagation ; Edge dislocations ; Electron backscatter diffraction ; Fatigue crack growth ; Fatigue failure ; Fracture mechanics ; Grains ; High strength alloys ; Materials fatigue ; Misalignment ; Nucleation ; Slip bands ; Small cracks ; Surface replication</subject><ispartof>International journal of fatigue, 2020-11, Vol.140, p.105790, Article 105790</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-802447cba7ea563175bb6eb809320f461d697340d00ed5748de37129ca8351633</citedby><cites>FETCH-LOGICAL-c343t-802447cba7ea563175bb6eb809320f461d697340d00ed5748de37129ca8351633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2020.105790$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Cauthen, C.</creatorcontrib><creatorcontrib>Anderson, K.V.</creatorcontrib><creatorcontrib>Avery, D.Z.</creatorcontrib><creatorcontrib>Baker, A.</creatorcontrib><creatorcontrib>Williamson, C.J.</creatorcontrib><creatorcontrib>Daniewicz, S.R.</creatorcontrib><creatorcontrib>Jordon, J.B.</creatorcontrib><title>Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys</title><title>International journal of fatigue</title><description>•Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site.
Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA7065 and AA2099, were quantified using a surface replication process for the first time. In addition, scanning electron microscopy analysis revealed that for AA7065, crack initiation was caused by either voids or intermetallic particles. Whereas, for the AA2099, crack initiation was caused by persistent slip bands and intermetallic particles. From electron backscatter diffraction results, the grains at the crack initiation site for the AA7065 exhibited high misorientation boundaries, while the grains at the crack initiation sites for the AA2099 exhibited both high and low misorientation boundaries.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Boundaries</subject><subject>Crack formation</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Edge dislocations</subject><subject>Electron backscatter diffraction</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Grains</subject><subject>High strength alloys</subject><subject>Materials fatigue</subject><subject>Misalignment</subject><subject>Nucleation</subject><subject>Slip bands</subject><subject>Small cracks</subject><subject>Surface replication</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI3YIlzyvoVJ8eqooBUiQucLddxW4fEKXYC6t_jKBVXTrPanZnVDEL3BBYESP5YL1y9073bD3ZBgY5bIUu4QDNSyDJjXNBLNAPCaUYIZdfoJsYaAEqQYoba9STFJmjzif1gGps2ncfaV7h1JnSxD4Pph6Cb5oRjm-BM3ofupz_g1pqD9i62ETuPD25_wEli_T7ddDO0zg9tGpruFG_R1U430d6dcY4-1k_vq5ds8_b8ulpuMsM467MCKOfSbLW0WuSMSLHd5nZbQMko7HhOqryUjEMFYCsheVFZJgktjS6YIDljc_Qw-R5D9zXY2Ku6G4JPLxUVIDjJhcwTS06sMWQMdqeOwbU6nBQBNXaravXXrRq7VVO3SbmclDaF-HY2qGic9cZWLljTq6pz_3r8AsYxh-s</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Cauthen, C.</creator><creator>Anderson, K.V.</creator><creator>Avery, D.Z.</creator><creator>Baker, A.</creator><creator>Williamson, C.J.</creator><creator>Daniewicz, S.R.</creator><creator>Jordon, J.B.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202011</creationdate><title>Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys</title><author>Cauthen, C. ; Anderson, K.V. ; Avery, D.Z. ; Baker, A. ; Williamson, C.J. ; Daniewicz, S.R. ; Jordon, J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-802447cba7ea563175bb6eb809320f461d697340d00ed5748de37129ca8351633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Boundaries</topic><topic>Crack formation</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Edge dislocations</topic><topic>Electron backscatter diffraction</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Grains</topic><topic>High strength alloys</topic><topic>Materials fatigue</topic><topic>Misalignment</topic><topic>Nucleation</topic><topic>Slip bands</topic><topic>Small cracks</topic><topic>Surface replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cauthen, C.</creatorcontrib><creatorcontrib>Anderson, K.V.</creatorcontrib><creatorcontrib>Avery, D.Z.</creatorcontrib><creatorcontrib>Baker, A.</creatorcontrib><creatorcontrib>Williamson, C.J.</creatorcontrib><creatorcontrib>Daniewicz, S.R.</creatorcontrib><creatorcontrib>Jordon, J.B.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cauthen, C.</au><au>Anderson, K.V.</au><au>Avery, D.Z.</au><au>Baker, A.</au><au>Williamson, C.J.</au><au>Daniewicz, S.R.</au><au>Jordon, J.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys</atitle><jtitle>International journal of fatigue</jtitle><date>2020-11</date><risdate>2020</risdate><volume>140</volume><spage>105790</spage><pages>105790-</pages><artnum>105790</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Surface replica method was used to measure small fatigue crack growth rates.•Fatigue cracks initiated from voids, particles and PSBs.•Grain misorientation was quantified at crack initiation site.
Characterization of microstructurally small fatigue crack growth behavior for two aluminum alloys, AA7065 and AA2099, were quantified using a surface replication process for the first time. In addition, scanning electron microscopy analysis revealed that for AA7065, crack initiation was caused by either voids or intermetallic particles. Whereas, for the AA2099, crack initiation was caused by persistent slip bands and intermetallic particles. From electron backscatter diffraction results, the grains at the crack initiation site for the AA7065 exhibited high misorientation boundaries, while the grains at the crack initiation sites for the AA2099 exhibited both high and low misorientation boundaries.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2020.105790</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2020-11, Vol.140, p.105790, Article 105790 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_journals_2505416576 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum alloys Aluminum base alloys Boundaries Crack formation Crack initiation Crack propagation Edge dislocations Electron backscatter diffraction Fatigue crack growth Fatigue failure Fracture mechanics Grains High strength alloys Materials fatigue Misalignment Nucleation Slip bands Small cracks Surface replication |
title | Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20crack%20nucleation%20and%20microstructurally%20small%20crack%20growth%20mechanisms%20in%20high%20strength%20aluminum%20alloys&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Cauthen,%20C.&rft.date=2020-11&rft.volume=140&rft.spage=105790&rft.pages=105790-&rft.artnum=105790&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2020.105790&rft_dat=%3Cproquest_cross%3E2505416576%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505416576&rft_id=info:pmid/&rft_els_id=S0142112320303212&rfr_iscdi=true |