The measurement accuracy of instrumented ship structures under local ice loads using strain gauges

Strain gauges are commonly used for the instrumentation of ship structures to measure ice loads on the basis of shear strain differences. Finite Element Analysis (FEA) is used to determine the load–strain relation of the instrumented area by calculating an Influence Coefficient Matrix (ICM). However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine structures 2021-03, Vol.76, p.102919, Article 102919
Hauptverfasser: Böhm, Angelo Mario, von Bock und Polach, Rüdiger Ulrich Franz, Herrnring, Hauke, Ehlers, Sören
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102919
container_title Marine structures
container_volume 76
creator Böhm, Angelo Mario
von Bock und Polach, Rüdiger Ulrich Franz
Herrnring, Hauke
Ehlers, Sören
description Strain gauges are commonly used for the instrumentation of ship structures to measure ice loads on the basis of shear strain differences. Finite Element Analysis (FEA) is used to determine the load–strain relation of the instrumented area by calculating an Influence Coefficient Matrix (ICM). However, the accuracy of the measurement method and the influence of the load location and load length on the accuracy of the load determination are rarely assessed. Consequently, this paper identifies the accuracy of the ICM, discusses which structures are suitable for measurements of shear strain differences and presents possible improvements regarding these measurements. As load cases are systematically varied over a finite element model, the external load is recalculated based on the resulting shear strains. The number of strain gauges used for the measurement of shear strains has a significant impact on the ICM. For common instrumentation it was found that the ice load can only be accurately determined, if the ice load acts within the instrumented area. To overcome this limitation, an approach to determine the load location is presented among further recommendations.
doi_str_mv 10.1016/j.marstruc.2020.102919
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505414030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951833920302100</els_id><sourcerecordid>2505414030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-7f7fb5b2c51634c65b3609e79a7b2538ffe71c41272fc62a5a0d4f95dadbb8993</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF5Alzil-xHF9A1W8pEpcytly7HXrqE2KnSD13-MQOHPa1WhmVvshdEvJghJa3TeLg4mpj4NdMMJGkSmqztCMLiUvSirJOZoRJWix5FxdoquUGkKopJTOUL3ZAT6ASUOEA7Q9NtYO0dgT7jwO7Vg7yuBw2oUj_jnTZ2_CQ-sg4n1nzR4HC3kzLqsptNvRZkKLt2bYQrpGF97sE9z8zjn6eH7arF6L9fvL2-pxXVhekr6QXvpa1MwKWvHSVqLmFVEglZE1E3zpPUhqS8ok87ZiRhjiSq-EM66ul0rxObqbeo-x-xwg9brphtjmk5oJIkpaEk6yq5pcNnYpRfD6GEMGeNKU6JGnbvQfTz3y1BPPHHyYgpB_-AoQdbIBWgsuRLC9dl34r-IbGJaD1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505414030</pqid></control><display><type>article</type><title>The measurement accuracy of instrumented ship structures under local ice loads using strain gauges</title><source>Elsevier ScienceDirect Journals</source><creator>Böhm, Angelo Mario ; von Bock und Polach, Rüdiger Ulrich Franz ; Herrnring, Hauke ; Ehlers, Sören</creator><creatorcontrib>Böhm, Angelo Mario ; von Bock und Polach, Rüdiger Ulrich Franz ; Herrnring, Hauke ; Ehlers, Sören</creatorcontrib><description>Strain gauges are commonly used for the instrumentation of ship structures to measure ice loads on the basis of shear strain differences. Finite Element Analysis (FEA) is used to determine the load–strain relation of the instrumented area by calculating an Influence Coefficient Matrix (ICM). However, the accuracy of the measurement method and the influence of the load location and load length on the accuracy of the load determination are rarely assessed. Consequently, this paper identifies the accuracy of the ICM, discusses which structures are suitable for measurements of shear strain differences and presents possible improvements regarding these measurements. As load cases are systematically varied over a finite element model, the external load is recalculated based on the resulting shear strains. The number of strain gauges used for the measurement of shear strains has a significant impact on the ICM. For common instrumentation it was found that the ice load can only be accurately determined, if the ice load acts within the instrumented area. To overcome this limitation, an approach to determine the load location is presented among further recommendations.</description><identifier>ISSN: 0951-8339</identifier><identifier>EISSN: 1873-4170</identifier><identifier>DOI: 10.1016/j.marstruc.2020.102919</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Accuracy ; Finite element method ; Gauges ; Ice ; Ice load ; Ice loads ; Influence coefficient ; Influence Coefficient Matrix ; Instrumentation ; Instruments ; Load ; Load length ; Load location ; Loads (forces) ; Mathematical analysis ; Measurement ; Measurement methods ; Shear ; Shear strain ; Ships ; Strain analysis ; Strain gauges ; Structures</subject><ispartof>Marine structures, 2021-03, Vol.76, p.102919, Article 102919</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-7f7fb5b2c51634c65b3609e79a7b2538ffe71c41272fc62a5a0d4f95dadbb8993</citedby><cites>FETCH-LOGICAL-c340t-7f7fb5b2c51634c65b3609e79a7b2538ffe71c41272fc62a5a0d4f95dadbb8993</cites><orcidid>0000-0002-1764-5660 ; 0000-0002-4093-8381 ; 0000-0001-5698-9354 ; 0000-0002-3583-684X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0951833920302100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Böhm, Angelo Mario</creatorcontrib><creatorcontrib>von Bock und Polach, Rüdiger Ulrich Franz</creatorcontrib><creatorcontrib>Herrnring, Hauke</creatorcontrib><creatorcontrib>Ehlers, Sören</creatorcontrib><title>The measurement accuracy of instrumented ship structures under local ice loads using strain gauges</title><title>Marine structures</title><description>Strain gauges are commonly used for the instrumentation of ship structures to measure ice loads on the basis of shear strain differences. Finite Element Analysis (FEA) is used to determine the load–strain relation of the instrumented area by calculating an Influence Coefficient Matrix (ICM). However, the accuracy of the measurement method and the influence of the load location and load length on the accuracy of the load determination are rarely assessed. Consequently, this paper identifies the accuracy of the ICM, discusses which structures are suitable for measurements of shear strain differences and presents possible improvements regarding these measurements. As load cases are systematically varied over a finite element model, the external load is recalculated based on the resulting shear strains. The number of strain gauges used for the measurement of shear strains has a significant impact on the ICM. For common instrumentation it was found that the ice load can only be accurately determined, if the ice load acts within the instrumented area. To overcome this limitation, an approach to determine the load location is presented among further recommendations.</description><subject>Accuracy</subject><subject>Finite element method</subject><subject>Gauges</subject><subject>Ice</subject><subject>Ice load</subject><subject>Ice loads</subject><subject>Influence coefficient</subject><subject>Influence Coefficient Matrix</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Load</subject><subject>Load length</subject><subject>Load location</subject><subject>Loads (forces)</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Measurement methods</subject><subject>Shear</subject><subject>Shear strain</subject><subject>Ships</subject><subject>Strain analysis</subject><subject>Strain gauges</subject><subject>Structures</subject><issn>0951-8339</issn><issn>1873-4170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF5Alzil-xHF9A1W8pEpcytly7HXrqE2KnSD13-MQOHPa1WhmVvshdEvJghJa3TeLg4mpj4NdMMJGkSmqztCMLiUvSirJOZoRJWix5FxdoquUGkKopJTOUL3ZAT6ASUOEA7Q9NtYO0dgT7jwO7Vg7yuBw2oUj_jnTZ2_CQ-sg4n1nzR4HC3kzLqsptNvRZkKLt2bYQrpGF97sE9z8zjn6eH7arF6L9fvL2-pxXVhekr6QXvpa1MwKWvHSVqLmFVEglZE1E3zpPUhqS8ok87ZiRhjiSq-EM66ul0rxObqbeo-x-xwg9brphtjmk5oJIkpaEk6yq5pcNnYpRfD6GEMGeNKU6JGnbvQfTz3y1BPPHHyYgpB_-AoQdbIBWgsuRLC9dl34r-IbGJaD1g</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Böhm, Angelo Mario</creator><creator>von Bock und Polach, Rüdiger Ulrich Franz</creator><creator>Herrnring, Hauke</creator><creator>Ehlers, Sören</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1764-5660</orcidid><orcidid>https://orcid.org/0000-0002-4093-8381</orcidid><orcidid>https://orcid.org/0000-0001-5698-9354</orcidid><orcidid>https://orcid.org/0000-0002-3583-684X</orcidid></search><sort><creationdate>202103</creationdate><title>The measurement accuracy of instrumented ship structures under local ice loads using strain gauges</title><author>Böhm, Angelo Mario ; von Bock und Polach, Rüdiger Ulrich Franz ; Herrnring, Hauke ; Ehlers, Sören</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-7f7fb5b2c51634c65b3609e79a7b2538ffe71c41272fc62a5a0d4f95dadbb8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Finite element method</topic><topic>Gauges</topic><topic>Ice</topic><topic>Ice load</topic><topic>Ice loads</topic><topic>Influence coefficient</topic><topic>Influence Coefficient Matrix</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Load</topic><topic>Load length</topic><topic>Load location</topic><topic>Loads (forces)</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Measurement methods</topic><topic>Shear</topic><topic>Shear strain</topic><topic>Ships</topic><topic>Strain analysis</topic><topic>Strain gauges</topic><topic>Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhm, Angelo Mario</creatorcontrib><creatorcontrib>von Bock und Polach, Rüdiger Ulrich Franz</creatorcontrib><creatorcontrib>Herrnring, Hauke</creatorcontrib><creatorcontrib>Ehlers, Sören</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Marine structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhm, Angelo Mario</au><au>von Bock und Polach, Rüdiger Ulrich Franz</au><au>Herrnring, Hauke</au><au>Ehlers, Sören</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The measurement accuracy of instrumented ship structures under local ice loads using strain gauges</atitle><jtitle>Marine structures</jtitle><date>2021-03</date><risdate>2021</risdate><volume>76</volume><spage>102919</spage><pages>102919-</pages><artnum>102919</artnum><issn>0951-8339</issn><eissn>1873-4170</eissn><abstract>Strain gauges are commonly used for the instrumentation of ship structures to measure ice loads on the basis of shear strain differences. Finite Element Analysis (FEA) is used to determine the load–strain relation of the instrumented area by calculating an Influence Coefficient Matrix (ICM). However, the accuracy of the measurement method and the influence of the load location and load length on the accuracy of the load determination are rarely assessed. Consequently, this paper identifies the accuracy of the ICM, discusses which structures are suitable for measurements of shear strain differences and presents possible improvements regarding these measurements. As load cases are systematically varied over a finite element model, the external load is recalculated based on the resulting shear strains. The number of strain gauges used for the measurement of shear strains has a significant impact on the ICM. For common instrumentation it was found that the ice load can only be accurately determined, if the ice load acts within the instrumented area. To overcome this limitation, an approach to determine the load location is presented among further recommendations.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.marstruc.2020.102919</doi><orcidid>https://orcid.org/0000-0002-1764-5660</orcidid><orcidid>https://orcid.org/0000-0002-4093-8381</orcidid><orcidid>https://orcid.org/0000-0001-5698-9354</orcidid><orcidid>https://orcid.org/0000-0002-3583-684X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-8339
ispartof Marine structures, 2021-03, Vol.76, p.102919, Article 102919
issn 0951-8339
1873-4170
language eng
recordid cdi_proquest_journals_2505414030
source Elsevier ScienceDirect Journals
subjects Accuracy
Finite element method
Gauges
Ice
Ice load
Ice loads
Influence coefficient
Influence Coefficient Matrix
Instrumentation
Instruments
Load
Load length
Load location
Loads (forces)
Mathematical analysis
Measurement
Measurement methods
Shear
Shear strain
Ships
Strain analysis
Strain gauges
Structures
title The measurement accuracy of instrumented ship structures under local ice loads using strain gauges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20measurement%20accuracy%20of%20instrumented%20ship%20structures%20under%20local%20ice%20loads%20using%20strain%20gauges&rft.jtitle=Marine%20structures&rft.au=B%C3%B6hm,%20Angelo%20Mario&rft.date=2021-03&rft.volume=76&rft.spage=102919&rft.pages=102919-&rft.artnum=102919&rft.issn=0951-8339&rft.eissn=1873-4170&rft_id=info:doi/10.1016/j.marstruc.2020.102919&rft_dat=%3Cproquest_cross%3E2505414030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505414030&rft_id=info:pmid/&rft_els_id=S0951833920302100&rfr_iscdi=true