A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements

This paper presents a new finite element solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of the classical bilinear or trilinear Lagrangian elements. It solves the primal variable displacement in the strain–div formulation and can handle both displacement and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2020-09, Vol.80 (6), p.1578-1595
Hauptverfasser: Harper, Graham, Wang, Ruishu, Liu, Jiangguo, Tavener, Simon, Zhang, Ran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1595
container_issue 6
container_start_page 1578
container_title Computers & mathematics with applications (1987)
container_volume 80
creator Harper, Graham
Wang, Ruishu
Liu, Jiangguo
Tavener, Simon
Zhang, Ran
description This paper presents a new finite element solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of the classical bilinear or trilinear Lagrangian elements. It solves the primal variable displacement in the strain–div formulation and can handle both displacement and traction boundary conditions. It is a locking-free solver based on conforming finite elements. The solver has second order accuracy in displacement and first order accuracy in stress and dilation (divergence of displacement), as validated by theoretical analysis and illustrated by numerical experiments on benchmarks. deal.II implementation is also discussed.
doi_str_mv 10.1016/j.camwa.2020.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505413905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122120302807</els_id><sourcerecordid>2505413905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-cb665bade80c3815307033b8cfc213080c1f7913f5f8530710d7a67704d57c303</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxBWwssU4Yx02cLlggxEuqxAbW1tQety6pDXbKY8G_k1DWrEYz994ZzWHsTEApQDQX69Lg5gPLCiooQZUgpntsIlolC9U07T6bQDtrC1FV4pAd5bwGgKmsYMK-r3gXzYsPy8IlIp5j906Ju5h45wNh4tRh7r3x_RePgb9t0SbfYU8JO47B8hV94ors2G4oryjzBWayo5lC8ma1odDz6PgclwnD0uMgdDRO8wk7cNhlOv2rx-z59ubp-r6YP949XF_NCyNV0xdm0TT1Ai21YGQragkKpFy0xplKSBimwqmZkK527SgKsAobpWBqa2UkyGN2vtv7muLblnKv13GbwnBSVzXUUyFnUA8uuXOZFHNO5PRr8htMX1qAHjnrtf7lrEfOGpQeOA-py12KhgfePSWdjadgyPpEptc2-n_zPx2AiDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505413905</pqid></control><display><type>article</type><title>A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Harper, Graham ; Wang, Ruishu ; Liu, Jiangguo ; Tavener, Simon ; Zhang, Ran</creator><creatorcontrib>Harper, Graham ; Wang, Ruishu ; Liu, Jiangguo ; Tavener, Simon ; Zhang, Ran</creatorcontrib><description>This paper presents a new finite element solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of the classical bilinear or trilinear Lagrangian elements. It solves the primal variable displacement in the strain–div formulation and can handle both displacement and traction boundary conditions. It is a locking-free solver based on conforming finite elements. The solver has second order accuracy in displacement and first order accuracy in stress and dilation (divergence of displacement), as validated by theoretical analysis and illustrated by numerical experiments on benchmarks. deal.II implementation is also discussed.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2020.07.014</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boundary conditions ; Deal.II implementation ; Displacement ; Divergence ; Elasticity ; Enrichment of Lagrangian elements ; Hexahedral meshes ; Linear elasticity ; Locking ; Locking-free ; Mathematical analysis ; Quadrilateral meshes ; Quadrilaterals ; Solvers</subject><ispartof>Computers &amp; mathematics with applications (1987), 2020-09, Vol.80 (6), p.1578-1595</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-cb665bade80c3815307033b8cfc213080c1f7913f5f8530710d7a67704d57c303</citedby><cites>FETCH-LOGICAL-c376t-cb665bade80c3815307033b8cfc213080c1f7913f5f8530710d7a67704d57c303</cites><orcidid>0000-0002-2188-5157 ; 0000-0001-9298-5588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2020.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Harper, Graham</creatorcontrib><creatorcontrib>Wang, Ruishu</creatorcontrib><creatorcontrib>Liu, Jiangguo</creatorcontrib><creatorcontrib>Tavener, Simon</creatorcontrib><creatorcontrib>Zhang, Ran</creatorcontrib><title>A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements</title><title>Computers &amp; mathematics with applications (1987)</title><description>This paper presents a new finite element solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of the classical bilinear or trilinear Lagrangian elements. It solves the primal variable displacement in the strain–div formulation and can handle both displacement and traction boundary conditions. It is a locking-free solver based on conforming finite elements. The solver has second order accuracy in displacement and first order accuracy in stress and dilation (divergence of displacement), as validated by theoretical analysis and illustrated by numerical experiments on benchmarks. deal.II implementation is also discussed.</description><subject>Boundary conditions</subject><subject>Deal.II implementation</subject><subject>Displacement</subject><subject>Divergence</subject><subject>Elasticity</subject><subject>Enrichment of Lagrangian elements</subject><subject>Hexahedral meshes</subject><subject>Linear elasticity</subject><subject>Locking</subject><subject>Locking-free</subject><subject>Mathematical analysis</subject><subject>Quadrilateral meshes</subject><subject>Quadrilaterals</subject><subject>Solvers</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxBWwssU4Yx02cLlggxEuqxAbW1tQety6pDXbKY8G_k1DWrEYz994ZzWHsTEApQDQX69Lg5gPLCiooQZUgpntsIlolC9U07T6bQDtrC1FV4pAd5bwGgKmsYMK-r3gXzYsPy8IlIp5j906Ju5h45wNh4tRh7r3x_RePgb9t0SbfYU8JO47B8hV94ors2G4oryjzBWayo5lC8ma1odDz6PgclwnD0uMgdDRO8wk7cNhlOv2rx-z59ubp-r6YP949XF_NCyNV0xdm0TT1Ai21YGQragkKpFy0xplKSBimwqmZkK527SgKsAobpWBqa2UkyGN2vtv7muLblnKv13GbwnBSVzXUUyFnUA8uuXOZFHNO5PRr8htMX1qAHjnrtf7lrEfOGpQeOA-py12KhgfePSWdjadgyPpEptc2-n_zPx2AiDg</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Harper, Graham</creator><creator>Wang, Ruishu</creator><creator>Liu, Jiangguo</creator><creator>Tavener, Simon</creator><creator>Zhang, Ran</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2188-5157</orcidid><orcidid>https://orcid.org/0000-0001-9298-5588</orcidid></search><sort><creationdate>20200915</creationdate><title>A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements</title><author>Harper, Graham ; Wang, Ruishu ; Liu, Jiangguo ; Tavener, Simon ; Zhang, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-cb665bade80c3815307033b8cfc213080c1f7913f5f8530710d7a67704d57c303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Deal.II implementation</topic><topic>Displacement</topic><topic>Divergence</topic><topic>Elasticity</topic><topic>Enrichment of Lagrangian elements</topic><topic>Hexahedral meshes</topic><topic>Linear elasticity</topic><topic>Locking</topic><topic>Locking-free</topic><topic>Mathematical analysis</topic><topic>Quadrilateral meshes</topic><topic>Quadrilaterals</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harper, Graham</creatorcontrib><creatorcontrib>Wang, Ruishu</creatorcontrib><creatorcontrib>Liu, Jiangguo</creatorcontrib><creatorcontrib>Tavener, Simon</creatorcontrib><creatorcontrib>Zhang, Ran</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harper, Graham</au><au>Wang, Ruishu</au><au>Liu, Jiangguo</au><au>Tavener, Simon</au><au>Zhang, Ran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>80</volume><issue>6</issue><spage>1578</spage><epage>1595</epage><pages>1578-1595</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper presents a new finite element solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of the classical bilinear or trilinear Lagrangian elements. It solves the primal variable displacement in the strain–div formulation and can handle both displacement and traction boundary conditions. It is a locking-free solver based on conforming finite elements. The solver has second order accuracy in displacement and first order accuracy in stress and dilation (divergence of displacement), as validated by theoretical analysis and illustrated by numerical experiments on benchmarks. deal.II implementation is also discussed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2020.07.014</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2188-5157</orcidid><orcidid>https://orcid.org/0000-0001-9298-5588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2020-09, Vol.80 (6), p.1578-1595
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2505413905
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Boundary conditions
Deal.II implementation
Displacement
Divergence
Elasticity
Enrichment of Lagrangian elements
Hexahedral meshes
Linear elasticity
Locking
Locking-free
Mathematical analysis
Quadrilateral meshes
Quadrilaterals
Solvers
title A locking-free solver for linear elasticity on quadrilateral and hexahedral meshes based on enrichment of Lagrangian elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20locking-free%20solver%20for%20linear%20elasticity%20on%20quadrilateral%20and%20hexahedral%20meshes%20based%20on%20enrichment%20of%20Lagrangian%20elements&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Harper,%20Graham&rft.date=2020-09-15&rft.volume=80&rft.issue=6&rft.spage=1578&rft.epage=1595&rft.pages=1578-1595&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2020.07.014&rft_dat=%3Cproquest_cross%3E2505413905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505413905&rft_id=info:pmid/&rft_els_id=S0898122120302807&rfr_iscdi=true