Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras
We will show a centrally free action of an amenable rigid C ∗ -tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid C ∗ -tensor category up to approximate inner conjugacy on pr...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-04, Vol.383 (1), p.71-152 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Communications in mathematical physics |
container_volume | 383 |
creator | Tomatsu, Reiji |
description | We will show a centrally free action of an amenable rigid
C
∗
-tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid
C
∗
-tensor category up to approximate inner conjugacy on properly infinite von Neumann algebras. This is regarded as a generalization of classification of amenable discrete groups due to A. Connes, V. Jones and A. Ocneanu. We have the following two applications: a classification of centrally free actions of amenable discrete quantum groups of Kac type on von Neumann algebras and another proof of S. Popa’s celebrated classification result of amenable subfactors. As another application of the Rohlin property, we will prove the fullness of the crossed product of a full factor by a minimal action of a compact group. |
doi_str_mv | 10.1007/s00220-021-04037-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2505390968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505390968</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-42f0ad058b735a80f87b700600b0b240fe1b04375307e451987e112de5feabaf3</originalsourceid><addsrcrecordid>eNpFkNFKwzAYhYMoOKcv4FXA6-hJ0jbtZSlOBVGEeV0S92dsdOlMOsE38A18P5_E6gQvDufm4xz4GDuXuJSAuUqAUhBQUiCDNsIcsInMtBKoZHHIJoCE0IUsjtlJSmsAlSqKCXtqKAzRdt07n0UiXr8Mqz4k3ntebyhY1xFvvj4-xZxC6iNv7EDLPq5oRAJ_G_NAu40Ngdfdkly06ZQdedslOvvrKXueXc-bW3H_eHPX1Pdiq5QZRKY87AJ56YzObQlfGmeAAnBwKoMn6ZBpk2sYynJZlYakVAvKPVlnvZ6yi_3uNvavO0pDu-53MYyXrcqR6wpVUY6U3lNpG1dhSfGfkmh_3LV7d-3orv111xr9DRZ-YRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505390968</pqid></control><display><type>article</type><title>Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras</title><source>SpringerNature Journals</source><creator>Tomatsu, Reiji</creator><creatorcontrib>Tomatsu, Reiji</creatorcontrib><description>We will show a centrally free action of an amenable rigid
C
∗
-tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid
C
∗
-tensor category up to approximate inner conjugacy on properly infinite von Neumann algebras. This is regarded as a generalization of classification of amenable discrete groups due to A. Connes, V. Jones and A. Ocneanu. We have the following two applications: a classification of centrally free actions of amenable discrete quantum groups of Kac type on von Neumann algebras and another proof of S. Popa’s celebrated classification result of amenable subfactors. As another application of the Rohlin property, we will prove the fullness of the crossed product of a full factor by a minimal action of a compact group.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04037-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Classical and Quantum Gravitation ; Classification ; Complex Systems ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Tensors ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-04, Vol.383 (1), p.71-152</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9137-7847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-021-04037-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-021-04037-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tomatsu, Reiji</creatorcontrib><title>Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We will show a centrally free action of an amenable rigid
C
∗
-tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid
C
∗
-tensor category up to approximate inner conjugacy on properly infinite von Neumann algebras. This is regarded as a generalization of classification of amenable discrete groups due to A. Connes, V. Jones and A. Ocneanu. We have the following two applications: a classification of centrally free actions of amenable discrete quantum groups of Kac type on von Neumann algebras and another proof of S. Popa’s celebrated classification result of amenable subfactors. As another application of the Rohlin property, we will prove the fullness of the crossed product of a full factor by a minimal action of a compact group.</description><subject>Algebra</subject><subject>Classical and Quantum Gravitation</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Tensors</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkNFKwzAYhYMoOKcv4FXA6-hJ0jbtZSlOBVGEeV0S92dsdOlMOsE38A18P5_E6gQvDufm4xz4GDuXuJSAuUqAUhBQUiCDNsIcsInMtBKoZHHIJoCE0IUsjtlJSmsAlSqKCXtqKAzRdt07n0UiXr8Mqz4k3ntebyhY1xFvvj4-xZxC6iNv7EDLPq5oRAJ_G_NAu40Ngdfdkly06ZQdedslOvvrKXueXc-bW3H_eHPX1Pdiq5QZRKY87AJ56YzObQlfGmeAAnBwKoMn6ZBpk2sYynJZlYakVAvKPVlnvZ6yi_3uNvavO0pDu-53MYyXrcqR6wpVUY6U3lNpG1dhSfGfkmh_3LV7d-3orv111xr9DRZ-YRk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Tomatsu, Reiji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0001-9137-7847</orcidid></search><sort><creationdate>20210401</creationdate><title>Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras</title><author>Tomatsu, Reiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-42f0ad058b735a80f87b700600b0b240fe1b04375307e451987e112de5feabaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Classical and Quantum Gravitation</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Tensors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomatsu, Reiji</creatorcontrib><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomatsu, Reiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>383</volume><issue>1</issue><spage>71</spage><epage>152</epage><pages>71-152</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We will show a centrally free action of an amenable rigid
C
∗
-tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid
C
∗
-tensor category up to approximate inner conjugacy on properly infinite von Neumann algebras. This is regarded as a generalization of classification of amenable discrete groups due to A. Connes, V. Jones and A. Ocneanu. We have the following two applications: a classification of centrally free actions of amenable discrete quantum groups of Kac type on von Neumann algebras and another proof of S. Popa’s celebrated classification result of amenable subfactors. As another application of the Rohlin property, we will prove the fullness of the crossed product of a full factor by a minimal action of a compact group.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04037-7</doi><tpages>82</tpages><orcidid>https://orcid.org/0000-0001-9137-7847</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2021-04, Vol.383 (1), p.71-152 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2505390968 |
source | SpringerNature Journals |
subjects | Algebra Classical and Quantum Gravitation Classification Complex Systems Mathematical analysis Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Tensors Theoretical |
title | Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centrally%20Free%20Actions%20of%20Amenable%20C%E2%88%97-Tensor%20Categories%20on%20von%20Neumann%20Algebras&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Tomatsu,%20Reiji&rft.date=2021-04-01&rft.volume=383&rft.issue=1&rft.spage=71&rft.epage=152&rft.pages=71-152&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04037-7&rft_dat=%3Cproquest_sprin%3E2505390968%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505390968&rft_id=info:pmid/&rfr_iscdi=true |