Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras

We will show a centrally free action of an amenable rigid C ∗ -tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid C ∗ -tensor category up to approximate inner conjugacy on pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-04, Vol.383 (1), p.71-152
1. Verfasser: Tomatsu, Reiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 71
container_title Communications in mathematical physics
container_volume 383
creator Tomatsu, Reiji
description We will show a centrally free action of an amenable rigid C ∗ -tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid C ∗ -tensor category up to approximate inner conjugacy on properly infinite von Neumann algebras. This is regarded as a generalization of classification of amenable discrete groups due to A. Connes, V. Jones and A. Ocneanu. We have the following two applications: a classification of centrally free actions of amenable discrete quantum groups of Kac type on von Neumann algebras and another proof of S. Popa’s celebrated classification result of amenable subfactors. As another application of the Rohlin property, we will prove the fullness of the crossed product of a full factor by a minimal action of a compact group.
doi_str_mv 10.1007/s00220-021-04037-7
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2505390968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505390968</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-42f0ad058b735a80f87b700600b0b240fe1b04375307e451987e112de5feabaf3</originalsourceid><addsrcrecordid>eNpFkNFKwzAYhYMoOKcv4FXA6-hJ0jbtZSlOBVGEeV0S92dsdOlMOsE38A18P5_E6gQvDufm4xz4GDuXuJSAuUqAUhBQUiCDNsIcsInMtBKoZHHIJoCE0IUsjtlJSmsAlSqKCXtqKAzRdt07n0UiXr8Mqz4k3ntebyhY1xFvvj4-xZxC6iNv7EDLPq5oRAJ_G_NAu40Ngdfdkly06ZQdedslOvvrKXueXc-bW3H_eHPX1Pdiq5QZRKY87AJ56YzObQlfGmeAAnBwKoMn6ZBpk2sYynJZlYakVAvKPVlnvZ6yi_3uNvavO0pDu-53MYyXrcqR6wpVUY6U3lNpG1dhSfGfkmh_3LV7d-3orv111xr9DRZ-YRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505390968</pqid></control><display><type>article</type><title>Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras</title><source>SpringerNature Journals</source><creator>Tomatsu, Reiji</creator><creatorcontrib>Tomatsu, Reiji</creatorcontrib><description>We will show a centrally free action of an amenable rigid C ∗ -tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid C ∗ -tensor category up to approximate inner conjugacy on properly infinite von Neumann algebras. This is regarded as a generalization of classification of amenable discrete groups due to A. Connes, V. Jones and A. Ocneanu. We have the following two applications: a classification of centrally free actions of amenable discrete quantum groups of Kac type on von Neumann algebras and another proof of S. Popa’s celebrated classification result of amenable subfactors. As another application of the Rohlin property, we will prove the fullness of the crossed product of a full factor by a minimal action of a compact group.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04037-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Classical and Quantum Gravitation ; Classification ; Complex Systems ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Tensors ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-04, Vol.383 (1), p.71-152</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9137-7847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-021-04037-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-021-04037-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tomatsu, Reiji</creatorcontrib><title>Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We will show a centrally free action of an amenable rigid C ∗ -tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid C ∗ -tensor category up to approximate inner conjugacy on properly infinite von Neumann algebras. This is regarded as a generalization of classification of amenable discrete groups due to A. Connes, V. Jones and A. Ocneanu. We have the following two applications: a classification of centrally free actions of amenable discrete quantum groups of Kac type on von Neumann algebras and another proof of S. Popa’s celebrated classification result of amenable subfactors. As another application of the Rohlin property, we will prove the fullness of the crossed product of a full factor by a minimal action of a compact group.</description><subject>Algebra</subject><subject>Classical and Quantum Gravitation</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Tensors</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkNFKwzAYhYMoOKcv4FXA6-hJ0jbtZSlOBVGEeV0S92dsdOlMOsE38A18P5_E6gQvDufm4xz4GDuXuJSAuUqAUhBQUiCDNsIcsInMtBKoZHHIJoCE0IUsjtlJSmsAlSqKCXtqKAzRdt07n0UiXr8Mqz4k3ntebyhY1xFvvj4-xZxC6iNv7EDLPq5oRAJ_G_NAu40Ngdfdkly06ZQdedslOvvrKXueXc-bW3H_eHPX1Pdiq5QZRKY87AJ56YzObQlfGmeAAnBwKoMn6ZBpk2sYynJZlYakVAvKPVlnvZ6yi_3uNvavO0pDu-53MYyXrcqR6wpVUY6U3lNpG1dhSfGfkmh_3LV7d-3orv111xr9DRZ-YRk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Tomatsu, Reiji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0001-9137-7847</orcidid></search><sort><creationdate>20210401</creationdate><title>Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras</title><author>Tomatsu, Reiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-42f0ad058b735a80f87b700600b0b240fe1b04375307e451987e112de5feabaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Classical and Quantum Gravitation</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Tensors</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomatsu, Reiji</creatorcontrib><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomatsu, Reiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>383</volume><issue>1</issue><spage>71</spage><epage>152</epage><pages>71-152</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We will show a centrally free action of an amenable rigid C ∗ -tensor category on a properly infinite von Neumann algebra has the Rohlin property. Our main result is the classification of centrally free cocycle actions of an amenable rigid C ∗ -tensor category up to approximate inner conjugacy on properly infinite von Neumann algebras. This is regarded as a generalization of classification of amenable discrete groups due to A. Connes, V. Jones and A. Ocneanu. We have the following two applications: a classification of centrally free actions of amenable discrete quantum groups of Kac type on von Neumann algebras and another proof of S. Popa’s celebrated classification result of amenable subfactors. As another application of the Rohlin property, we will prove the fullness of the crossed product of a full factor by a minimal action of a compact group.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04037-7</doi><tpages>82</tpages><orcidid>https://orcid.org/0000-0001-9137-7847</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2021-04, Vol.383 (1), p.71-152
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2505390968
source SpringerNature Journals
subjects Algebra
Classical and Quantum Gravitation
Classification
Complex Systems
Mathematical analysis
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Tensors
Theoretical
title Centrally Free Actions of Amenable C∗-Tensor Categories on von Neumann Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centrally%20Free%20Actions%20of%20Amenable%20C%E2%88%97-Tensor%20Categories%20on%20von%20Neumann%20Algebras&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Tomatsu,%20Reiji&rft.date=2021-04-01&rft.volume=383&rft.issue=1&rft.spage=71&rft.epage=152&rft.pages=71-152&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04037-7&rft_dat=%3Cproquest_sprin%3E2505390968%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505390968&rft_id=info:pmid/&rfr_iscdi=true