Structural transformation of kaolin as an active matrix for the in situ synthesis of zeolite Y
To produce an optimized matrix for the in situ crystallization of zeolite Y, a commercial kaolin chemically treated with NaOH solution at 97°C for 24 h and thermally transformed from 750 to 1100°C was studied. The kaolin calcined at 750°C has 20% more reactive tetrahedral aluminium species for the s...
Gespeichert in:
Veröffentlicht in: | Clay minerals 2020-12, Vol.55 (4), p.293-302 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | 4 |
container_start_page | 293 |
container_title | Clay minerals |
container_volume | 55 |
creator | Padilla, Jessyka Guzman, Alexander Molina, Daniel V Poveda-Jaramillo, Juan Carlos |
description | To produce an optimized matrix for the in situ crystallization of zeolite Y, a commercial kaolin chemically treated with NaOH solution at 97°C for 24 h and thermally transformed from 750 to 1100°C was studied. The kaolin calcined at 750°C has 20% more reactive tetrahedral aluminium species for the synthesis of zeolite Y than kaolin calcined at 865°C. The kaolin calcined at 1000°C has amorphous silica zones that may be extracted using caustic solution; this increases the surface area by a factor of 16 and generates mesopores ∼5 nm in diameter. These structural changes in the calcined and treated kaolins were combined to prepare microspheres of the mesoporous matrix, upon which well-dispersed crystals of zeolite Y crystallized. |
doi_str_mv | 10.1180/clm.2020.40 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505265277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505265277</sourcerecordid><originalsourceid>FETCH-LOGICAL-a320t-42053f7d1685ca28bef77dc1c1bc644c730b8acbe9062c3153ed96144a2517763</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKsr_0DApUy9eU3SpRRfUHChLtwYMmlGU6eTmmTU-utNUdDNvVzOd86Fg9AxgQkhCs5st5pQoDDhsINGhEtSKWCwi0YAMK2UEGofHaS0LCfjio3Q012Og81DNB3O0fSpDXFlsg89Di1-NaHzPTYJmzJt9u8OFzX6T1w4nF8cLnLyecBp05cz-bT1fbniyw4_HqK91nTJHf3uMXq4vLifXVfz26ub2fm8MoxCrjgFwVq5ILUS1lDVuFbKhSWWNLbm3EoGjTK2cVOoqWVEMLeY1oRzQwWRsmZjdPKTu47hbXAp62UYYl9eaipA0FpQKQt1-kPZGFKKrtXr6FcmbjQBvS1QlwL1tkDN4Y9-diFZ73rrPkLsFv-igRINHAgT7BtgxHJe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505265277</pqid></control><display><type>article</type><title>Structural transformation of kaolin as an active matrix for the in situ synthesis of zeolite Y</title><source>Cambridge University Press Journals Complete</source><creator>Padilla, Jessyka ; Guzman, Alexander ; Molina, Daniel V ; Poveda-Jaramillo, Juan Carlos</creator><creatorcontrib>Padilla, Jessyka ; Guzman, Alexander ; Molina, Daniel V ; Poveda-Jaramillo, Juan Carlos</creatorcontrib><description>To produce an optimized matrix for the in situ crystallization of zeolite Y, a commercial kaolin chemically treated with NaOH solution at 97°C for 24 h and thermally transformed from 750 to 1100°C was studied. The kaolin calcined at 750°C has 20% more reactive tetrahedral aluminium species for the synthesis of zeolite Y than kaolin calcined at 865°C. The kaolin calcined at 1000°C has amorphous silica zones that may be extracted using caustic solution; this increases the surface area by a factor of 16 and generates mesopores ∼5 nm in diameter. These structural changes in the calcined and treated kaolins were combined to prepare microspheres of the mesoporous matrix, upon which well-dispersed crystals of zeolite Y crystallized.</description><identifier>ISSN: 0009-8558</identifier><identifier>EISSN: 1471-8030</identifier><identifier>DOI: 10.1180/clm.2020.40</identifier><language>eng</language><publisher>Middlesex: Mineralogical Society</publisher><subject>Air flow ; Aluminium ; Aluminum ; Catalytic cracking ; chemical properties ; Chemical treatment ; clastic sediments ; clay mineralogy ; clay minerals ; crystal fractionation ; Crystallization ; Crystals ; experimental studies ; framework silicates ; geochemistry ; hydrothermal conditions ; in situ ; Kaolin ; kaolinite ; matrix ; Microspheres ; Roasting ; rock, sediment, soil ; sed rocks, sediments ; Sedimentary petrology ; sediments ; sheet silicates ; Silica ; silicates ; Silicon dioxide ; Sodium ; Sodium hydroxide ; Synthesis ; zeolite group ; Zeolites</subject><ispartof>Clay minerals, 2020-12, Vol.55 (4), p.293-302</ispartof><rights>GeoRef, Copyright 2021, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Abstract, Copyright, Mineralogical Society of Great Britain and Ireland</rights><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a320t-42053f7d1685ca28bef77dc1c1bc644c730b8acbe9062c3153ed96144a2517763</citedby><cites>FETCH-LOGICAL-a320t-42053f7d1685ca28bef77dc1c1bc644c730b8acbe9062c3153ed96144a2517763</cites><orcidid>0000-0002-6197-4736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Padilla, Jessyka</creatorcontrib><creatorcontrib>Guzman, Alexander</creatorcontrib><creatorcontrib>Molina, Daniel V</creatorcontrib><creatorcontrib>Poveda-Jaramillo, Juan Carlos</creatorcontrib><title>Structural transformation of kaolin as an active matrix for the in situ synthesis of zeolite Y</title><title>Clay minerals</title><description>To produce an optimized matrix for the in situ crystallization of zeolite Y, a commercial kaolin chemically treated with NaOH solution at 97°C for 24 h and thermally transformed from 750 to 1100°C was studied. The kaolin calcined at 750°C has 20% more reactive tetrahedral aluminium species for the synthesis of zeolite Y than kaolin calcined at 865°C. The kaolin calcined at 1000°C has amorphous silica zones that may be extracted using caustic solution; this increases the surface area by a factor of 16 and generates mesopores ∼5 nm in diameter. These structural changes in the calcined and treated kaolins were combined to prepare microspheres of the mesoporous matrix, upon which well-dispersed crystals of zeolite Y crystallized.</description><subject>Air flow</subject><subject>Aluminium</subject><subject>Aluminum</subject><subject>Catalytic cracking</subject><subject>chemical properties</subject><subject>Chemical treatment</subject><subject>clastic sediments</subject><subject>clay mineralogy</subject><subject>clay minerals</subject><subject>crystal fractionation</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>experimental studies</subject><subject>framework silicates</subject><subject>geochemistry</subject><subject>hydrothermal conditions</subject><subject>in situ</subject><subject>Kaolin</subject><subject>kaolinite</subject><subject>matrix</subject><subject>Microspheres</subject><subject>Roasting</subject><subject>rock, sediment, soil</subject><subject>sed rocks, sediments</subject><subject>Sedimentary petrology</subject><subject>sediments</subject><subject>sheet silicates</subject><subject>Silica</subject><subject>silicates</subject><subject>Silicon dioxide</subject><subject>Sodium</subject><subject>Sodium hydroxide</subject><subject>Synthesis</subject><subject>zeolite group</subject><subject>Zeolites</subject><issn>0009-8558</issn><issn>1471-8030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkEtLAzEUhYMoWKsr_0DApUy9eU3SpRRfUHChLtwYMmlGU6eTmmTU-utNUdDNvVzOd86Fg9AxgQkhCs5st5pQoDDhsINGhEtSKWCwi0YAMK2UEGofHaS0LCfjio3Q012Og81DNB3O0fSpDXFlsg89Di1-NaHzPTYJmzJt9u8OFzX6T1w4nF8cLnLyecBp05cz-bT1fbniyw4_HqK91nTJHf3uMXq4vLifXVfz26ub2fm8MoxCrjgFwVq5ILUS1lDVuFbKhSWWNLbm3EoGjTK2cVOoqWVEMLeY1oRzQwWRsmZjdPKTu47hbXAp62UYYl9eaipA0FpQKQt1-kPZGFKKrtXr6FcmbjQBvS1QlwL1tkDN4Y9-diFZ73rrPkLsFv-igRINHAgT7BtgxHJe</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Padilla, Jessyka</creator><creator>Guzman, Alexander</creator><creator>Molina, Daniel V</creator><creator>Poveda-Jaramillo, Juan Carlos</creator><general>Mineralogical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7RQ</scope><scope>7SR</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L.G</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6197-4736</orcidid></search><sort><creationdate>202012</creationdate><title>Structural transformation of kaolin as an active matrix for the in situ synthesis of zeolite Y</title><author>Padilla, Jessyka ; Guzman, Alexander ; Molina, Daniel V ; Poveda-Jaramillo, Juan Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a320t-42053f7d1685ca28bef77dc1c1bc644c730b8acbe9062c3153ed96144a2517763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air flow</topic><topic>Aluminium</topic><topic>Aluminum</topic><topic>Catalytic cracking</topic><topic>chemical properties</topic><topic>Chemical treatment</topic><topic>clastic sediments</topic><topic>clay mineralogy</topic><topic>clay minerals</topic><topic>crystal fractionation</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>experimental studies</topic><topic>framework silicates</topic><topic>geochemistry</topic><topic>hydrothermal conditions</topic><topic>in situ</topic><topic>Kaolin</topic><topic>kaolinite</topic><topic>matrix</topic><topic>Microspheres</topic><topic>Roasting</topic><topic>rock, sediment, soil</topic><topic>sed rocks, sediments</topic><topic>Sedimentary petrology</topic><topic>sediments</topic><topic>sheet silicates</topic><topic>Silica</topic><topic>silicates</topic><topic>Silicon dioxide</topic><topic>Sodium</topic><topic>Sodium hydroxide</topic><topic>Synthesis</topic><topic>zeolite group</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padilla, Jessyka</creatorcontrib><creatorcontrib>Guzman, Alexander</creatorcontrib><creatorcontrib>Molina, Daniel V</creatorcontrib><creatorcontrib>Poveda-Jaramillo, Juan Carlos</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Career & Technical Education Database</collection><collection>Engineered Materials Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Clay minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padilla, Jessyka</au><au>Guzman, Alexander</au><au>Molina, Daniel V</au><au>Poveda-Jaramillo, Juan Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural transformation of kaolin as an active matrix for the in situ synthesis of zeolite Y</atitle><jtitle>Clay minerals</jtitle><date>2020-12</date><risdate>2020</risdate><volume>55</volume><issue>4</issue><spage>293</spage><epage>302</epage><pages>293-302</pages><issn>0009-8558</issn><eissn>1471-8030</eissn><abstract>To produce an optimized matrix for the in situ crystallization of zeolite Y, a commercial kaolin chemically treated with NaOH solution at 97°C for 24 h and thermally transformed from 750 to 1100°C was studied. The kaolin calcined at 750°C has 20% more reactive tetrahedral aluminium species for the synthesis of zeolite Y than kaolin calcined at 865°C. The kaolin calcined at 1000°C has amorphous silica zones that may be extracted using caustic solution; this increases the surface area by a factor of 16 and generates mesopores ∼5 nm in diameter. These structural changes in the calcined and treated kaolins were combined to prepare microspheres of the mesoporous matrix, upon which well-dispersed crystals of zeolite Y crystallized.</abstract><cop>Middlesex</cop><pub>Mineralogical Society</pub><doi>10.1180/clm.2020.40</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6197-4736</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-8558 |
ispartof | Clay minerals, 2020-12, Vol.55 (4), p.293-302 |
issn | 0009-8558 1471-8030 |
language | eng |
recordid | cdi_proquest_journals_2505265277 |
source | Cambridge University Press Journals Complete |
subjects | Air flow Aluminium Aluminum Catalytic cracking chemical properties Chemical treatment clastic sediments clay mineralogy clay minerals crystal fractionation Crystallization Crystals experimental studies framework silicates geochemistry hydrothermal conditions in situ Kaolin kaolinite matrix Microspheres Roasting rock, sediment, soil sed rocks, sediments Sedimentary petrology sediments sheet silicates Silica silicates Silicon dioxide Sodium Sodium hydroxide Synthesis zeolite group Zeolites |
title | Structural transformation of kaolin as an active matrix for the in situ synthesis of zeolite Y |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20transformation%20of%20kaolin%20as%20an%20active%20matrix%20for%20the%20in%20situ%20synthesis%20of%20zeolite%20Y&rft.jtitle=Clay%20minerals&rft.au=Padilla,%20Jessyka&rft.date=2020-12&rft.volume=55&rft.issue=4&rft.spage=293&rft.epage=302&rft.pages=293-302&rft.issn=0009-8558&rft.eissn=1471-8030&rft_id=info:doi/10.1180/clm.2020.40&rft_dat=%3Cproquest_cross%3E2505265277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505265277&rft_id=info:pmid/&rfr_iscdi=true |