Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application

Selecting suitable precursor and exploring controllable carbonization process is crucial to carbon materials, especially for carbon-based material in electromagnetic interference shielding application. However, carbon materials are primarily used in the forms of powders, which remains big challenge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-03, Vol.32 (6), p.7090-7105
Hauptverfasser: Xie, Fan, Jia, Fengfeng, Zhuo, Longhai, Jin, Zhanfan, Wang, Danni, Lu, Zhaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7105
container_issue 6
container_start_page 7090
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Xie, Fan
Jia, Fengfeng
Zhuo, Longhai
Jin, Zhanfan
Wang, Danni
Lu, Zhaoqing
description Selecting suitable precursor and exploring controllable carbonization process is crucial to carbon materials, especially for carbon-based material in electromagnetic interference shielding application. However, carbon materials are primarily used in the forms of powders, which remains big challenge in developing continuous ones. Herein, large-scale aramid nanofibers (ANFs)-derived carbon membrane was developed for the first time. Influence of pyrolysis temperature on chemical constitution and crystalline structure during carbonization process was investigated. The results showed that the decomposition stage of ANFs freestanding membrane begun at ~ 474 °C, while the reconstruction stage begun at ~ 600 °C. Besides, the rupture of amide bonds occurred around 500 °C, which was validated by disappearance of C=O groups. Moreover, the declining integrated intensities I D / I G , and the sharp rising electrical conductivity of demonstrated progressive aromatization and ring condensation. In addition, the microgrooves with an average diameter of ~ 40 nm were formed during the carbonization. Subsequently, the ANFs-derived carbon membrane exhibited superior conductivity (123.8 S cm −1 ) and electromagnetic shielding effectiveness value of 16 dB (X band) with thickness of 28 μm. This work provided feasible strategy in fabricating carbon-based membrane for advanced electronic devices.
doi_str_mv 10.1007/s10854-021-05418-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505089059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505089059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4d6a5276548a82cd8e2cc47e001af15ba2a5837a716f11475f721001602185eb3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWH9ewFXAdTTJJJN0WYpVoehGwV3IZO60U2aSMZkKfQmf2bQV3Lm6i3u-c-BD6IbRO0apuk-MaikI5YxQKZgmxQmaMKkKIjT_OEUTOpWKCMn5ObpIaUMpLUWhJ-h7HvrBRju2X4DTuK13OHg87GLodmPr8BitT02IfU7kRw9ubX2behwaPHtZJFJDzGiNnY3VIdBXGQGcGQwduDGG3q487MtaP0JsIIJ3eWzdQle3foXtMHStOwxcobPGdgmuf-8lel88vM2fyPL18Xk-WxJXsOlIRF1ayVUphbaau1oDd04ooJTZhsnKcit1oaxiZcOYULJRPHtiZRakJVTFJbo99g4xfG4hjWYTttHnScMllVRPqZzmFD-mXAwpRWjMENvexp1h1Oy9m6N3k2vNwbspMlQcoZTDfgXxr_of6gdlxYjd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505089059</pqid></control><display><type>article</type><title>Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application</title><source>Springer Nature - Complete Springer Journals</source><creator>Xie, Fan ; Jia, Fengfeng ; Zhuo, Longhai ; Jin, Zhanfan ; Wang, Danni ; Lu, Zhaoqing</creator><creatorcontrib>Xie, Fan ; Jia, Fengfeng ; Zhuo, Longhai ; Jin, Zhanfan ; Wang, Danni ; Lu, Zhaoqing</creatorcontrib><description>Selecting suitable precursor and exploring controllable carbonization process is crucial to carbon materials, especially for carbon-based material in electromagnetic interference shielding application. However, carbon materials are primarily used in the forms of powders, which remains big challenge in developing continuous ones. Herein, large-scale aramid nanofibers (ANFs)-derived carbon membrane was developed for the first time. Influence of pyrolysis temperature on chemical constitution and crystalline structure during carbonization process was investigated. The results showed that the decomposition stage of ANFs freestanding membrane begun at ~ 474 °C, while the reconstruction stage begun at ~ 600 °C. Besides, the rupture of amide bonds occurred around 500 °C, which was validated by disappearance of C=O groups. Moreover, the declining integrated intensities I D / I G , and the sharp rising electrical conductivity of demonstrated progressive aromatization and ring condensation. In addition, the microgrooves with an average diameter of ~ 40 nm were formed during the carbonization. Subsequently, the ANFs-derived carbon membrane exhibited superior conductivity (123.8 S cm −1 ) and electromagnetic shielding effectiveness value of 16 dB (X band) with thickness of 28 μm. This work provided feasible strategy in fabricating carbon-based membrane for advanced electronic devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05418-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Carbonization ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Comparative studies ; Condensates ; Diameters ; Electrical resistivity ; Electromagnetic shielding ; Electronic devices ; Materials Science ; Membranes ; Nanofibers ; Optical and Electronic Materials ; Pyrolysis ; Superhigh frequencies</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7090-7105</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4d6a5276548a82cd8e2cc47e001af15ba2a5837a716f11475f721001602185eb3</citedby><cites>FETCH-LOGICAL-c319t-4d6a5276548a82cd8e2cc47e001af15ba2a5837a716f11475f721001602185eb3</cites><orcidid>0000-0002-2095-4405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05418-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05418-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xie, Fan</creatorcontrib><creatorcontrib>Jia, Fengfeng</creatorcontrib><creatorcontrib>Zhuo, Longhai</creatorcontrib><creatorcontrib>Jin, Zhanfan</creatorcontrib><creatorcontrib>Wang, Danni</creatorcontrib><creatorcontrib>Lu, Zhaoqing</creatorcontrib><title>Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Selecting suitable precursor and exploring controllable carbonization process is crucial to carbon materials, especially for carbon-based material in electromagnetic interference shielding application. However, carbon materials are primarily used in the forms of powders, which remains big challenge in developing continuous ones. Herein, large-scale aramid nanofibers (ANFs)-derived carbon membrane was developed for the first time. Influence of pyrolysis temperature on chemical constitution and crystalline structure during carbonization process was investigated. The results showed that the decomposition stage of ANFs freestanding membrane begun at ~ 474 °C, while the reconstruction stage begun at ~ 600 °C. Besides, the rupture of amide bonds occurred around 500 °C, which was validated by disappearance of C=O groups. Moreover, the declining integrated intensities I D / I G , and the sharp rising electrical conductivity of demonstrated progressive aromatization and ring condensation. In addition, the microgrooves with an average diameter of ~ 40 nm were formed during the carbonization. Subsequently, the ANFs-derived carbon membrane exhibited superior conductivity (123.8 S cm −1 ) and electromagnetic shielding effectiveness value of 16 dB (X band) with thickness of 28 μm. This work provided feasible strategy in fabricating carbon-based membrane for advanced electronic devices.</description><subject>Carbon</subject><subject>Carbonization</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Comparative studies</subject><subject>Condensates</subject><subject>Diameters</subject><subject>Electrical resistivity</subject><subject>Electromagnetic shielding</subject><subject>Electronic devices</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Nanofibers</subject><subject>Optical and Electronic Materials</subject><subject>Pyrolysis</subject><subject>Superhigh frequencies</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KAzEUhYMoWH9ewFXAdTTJJJN0WYpVoehGwV3IZO60U2aSMZkKfQmf2bQV3Lm6i3u-c-BD6IbRO0apuk-MaikI5YxQKZgmxQmaMKkKIjT_OEUTOpWKCMn5ObpIaUMpLUWhJ-h7HvrBRju2X4DTuK13OHg87GLodmPr8BitT02IfU7kRw9ubX2behwaPHtZJFJDzGiNnY3VIdBXGQGcGQwduDGG3q487MtaP0JsIIJ3eWzdQle3foXtMHStOwxcobPGdgmuf-8lel88vM2fyPL18Xk-WxJXsOlIRF1ayVUphbaau1oDd04ooJTZhsnKcit1oaxiZcOYULJRPHtiZRakJVTFJbo99g4xfG4hjWYTttHnScMllVRPqZzmFD-mXAwpRWjMENvexp1h1Oy9m6N3k2vNwbspMlQcoZTDfgXxr_of6gdlxYjd</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Xie, Fan</creator><creator>Jia, Fengfeng</creator><creator>Zhuo, Longhai</creator><creator>Jin, Zhanfan</creator><creator>Wang, Danni</creator><creator>Lu, Zhaoqing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2095-4405</orcidid></search><sort><creationdate>20210301</creationdate><title>Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application</title><author>Xie, Fan ; Jia, Fengfeng ; Zhuo, Longhai ; Jin, Zhanfan ; Wang, Danni ; Lu, Zhaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4d6a5276548a82cd8e2cc47e001af15ba2a5837a716f11475f721001602185eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Carbonization</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Comparative studies</topic><topic>Condensates</topic><topic>Diameters</topic><topic>Electrical resistivity</topic><topic>Electromagnetic shielding</topic><topic>Electronic devices</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Nanofibers</topic><topic>Optical and Electronic Materials</topic><topic>Pyrolysis</topic><topic>Superhigh frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Fan</creatorcontrib><creatorcontrib>Jia, Fengfeng</creatorcontrib><creatorcontrib>Zhuo, Longhai</creatorcontrib><creatorcontrib>Jin, Zhanfan</creatorcontrib><creatorcontrib>Wang, Danni</creatorcontrib><creatorcontrib>Lu, Zhaoqing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Fan</au><au>Jia, Fengfeng</au><au>Zhuo, Longhai</au><au>Jin, Zhanfan</au><au>Wang, Danni</au><au>Lu, Zhaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>7090</spage><epage>7105</epage><pages>7090-7105</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Selecting suitable precursor and exploring controllable carbonization process is crucial to carbon materials, especially for carbon-based material in electromagnetic interference shielding application. However, carbon materials are primarily used in the forms of powders, which remains big challenge in developing continuous ones. Herein, large-scale aramid nanofibers (ANFs)-derived carbon membrane was developed for the first time. Influence of pyrolysis temperature on chemical constitution and crystalline structure during carbonization process was investigated. The results showed that the decomposition stage of ANFs freestanding membrane begun at ~ 474 °C, while the reconstruction stage begun at ~ 600 °C. Besides, the rupture of amide bonds occurred around 500 °C, which was validated by disappearance of C=O groups. Moreover, the declining integrated intensities I D / I G , and the sharp rising electrical conductivity of demonstrated progressive aromatization and ring condensation. In addition, the microgrooves with an average diameter of ~ 40 nm were formed during the carbonization. Subsequently, the ANFs-derived carbon membrane exhibited superior conductivity (123.8 S cm −1 ) and electromagnetic shielding effectiveness value of 16 dB (X band) with thickness of 28 μm. This work provided feasible strategy in fabricating carbon-based membrane for advanced electronic devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05418-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2095-4405</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.7090-7105
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2505089059
source Springer Nature - Complete Springer Journals
subjects Carbon
Carbonization
Characterization and Evaluation of Materials
Chemistry and Materials Science
Comparative studies
Condensates
Diameters
Electrical resistivity
Electromagnetic shielding
Electronic devices
Materials Science
Membranes
Nanofibers
Optical and Electronic Materials
Pyrolysis
Superhigh frequencies
title Comparative study on pyrolytic transformation mechanism of ANFs-derived carbon membrane for electromagnetic interference shielding application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20study%20on%20pyrolytic%20transformation%20mechanism%20of%20ANFs-derived%20carbon%20membrane%20for%20electromagnetic%20interference%20shielding%20application&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Xie,%20Fan&rft.date=2021-03-01&rft.volume=32&rft.issue=6&rft.spage=7090&rft.epage=7105&rft.pages=7090-7105&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05418-3&rft_dat=%3Cproquest_cross%3E2505089059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505089059&rft_id=info:pmid/&rfr_iscdi=true