Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system

Cu 2 SnSe 3 has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here, p -type pure and In-doped Cu 2 SnSe 3 samples are synthesized by the solid-state sintering technique. Cubic structure w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2021-03, Vol.32 (6), p.6955-6964
Hauptverfasser: Thomas, Riya, Rao, Ashok, Jiang, Zhao-Ze, Kuo, Yung-Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6964
container_issue 6
container_start_page 6955
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Thomas, Riya
Rao, Ashok
Jiang, Zhao-Ze
Kuo, Yung-Kang
description Cu 2 SnSe 3 has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here, p -type pure and In-doped Cu 2 SnSe 3 samples are synthesized by the solid-state sintering technique. Cubic structure with F 4 ¯ 3 m space group is maintained for all the samples, and a linear increase in lattice parameter with increasing In concentration has been observed. The nature of electrical resistivity changes from semiconducting to metallic behavior for samples with x  > 0.10. The decrease in both electrical resistivity and Seebeck coefficient with an increase in x is attributed to the increased hole concentration. Such a scenario is confirmed from the room-temperature Hall effect measurements. Indium doping also reduces the thermal conductivity of the Cu 2 SnSe 3 system as a result of increased phonon scattering due to the mass fluctuation. Concurrently, enhancement of thermoelectric power factor ( PF ) and figure of merit ( ZT ) is achieved with In doping at Sn site of Cu 2 SnSe 3 . The maximum ZT of 0.04 has been exhibited by the sample with x  = 0.25 at 400 K, which is six times higher than that of the undoped Cu 2 SnSe 3 .
doi_str_mv 10.1007/s10854-021-05402-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505089048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505089048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8454acc15c1ae708ab52abeaa28dc9232f64762d55e059b1e76f44fd6ca344033</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytZs9SvGjUPBQBW8hzU7qlna3Jlto_72pq3jzNMPM-7wzvIRcc7jlAOVd4mC0YiA4A61AsP0JGXFdSqaMeD8lI6h0yZQW4pxcpLQCgEJJMyJhfmgxLpvUN55iCOh72gU6bWndbZt2SbuW4jpPY-Pdmrq2pv0Hxk3ut7HbYuwbTEdishPzdo5yWHe_DE2H1OPmkpwFt0549VPH5O3x4XXyzGYvT9PJ_Yx5WcieGaWV855rzx2WYNxCC7dA54SpfSWkCIUqC1FrjaCrBceyCEqFuvBOKgVSjsnN4Juf-9xh6u2q28U2n7RCgwZTgTJZJQaVj11KEYPdxmbj4sFysMc87ZCnzXna7zztPkNygFIWt0uMf9b_UF-iR3n5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505089048</pqid></control><display><type>article</type><title>Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system</title><source>Springer Nature - Complete Springer Journals</source><creator>Thomas, Riya ; Rao, Ashok ; Jiang, Zhao-Ze ; Kuo, Yung-Kang</creator><creatorcontrib>Thomas, Riya ; Rao, Ashok ; Jiang, Zhao-Ze ; Kuo, Yung-Kang</creatorcontrib><description>Cu 2 SnSe 3 has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here, p -type pure and In-doped Cu 2 SnSe 3 samples are synthesized by the solid-state sintering technique. Cubic structure with F 4 ¯ 3 m space group is maintained for all the samples, and a linear increase in lattice parameter with increasing In concentration has been observed. The nature of electrical resistivity changes from semiconducting to metallic behavior for samples with x  &gt; 0.10. The decrease in both electrical resistivity and Seebeck coefficient with an increase in x is attributed to the increased hole concentration. Such a scenario is confirmed from the room-temperature Hall effect measurements. Indium doping also reduces the thermal conductivity of the Cu 2 SnSe 3 system as a result of increased phonon scattering due to the mass fluctuation. Concurrently, enhancement of thermoelectric power factor ( PF ) and figure of merit ( ZT ) is achieved with In doping at Sn site of Cu 2 SnSe 3 . The maximum ZT of 0.04 has been exhibited by the sample with x  = 0.25 at 400 K, which is six times higher than that of the undoped Cu 2 SnSe 3 .</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05402-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Doping ; Electrical resistivity ; Electromagnetism ; Figure of merit ; Hall effect ; Heat conductivity ; Investigations ; Materials Science ; Optical and Electronic Materials ; Phonons ; Point defects ; Power factor ; Room temperature ; Seebeck effect ; Synergistic effect ; Temperature ; Thermal conductivity ; Thermodynamic properties ; Thermoelectric materials ; Thermoelectricity ; Transport properties</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.6955-6964</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8454acc15c1ae708ab52abeaa28dc9232f64762d55e059b1e76f44fd6ca344033</citedby><cites>FETCH-LOGICAL-c363t-8454acc15c1ae708ab52abeaa28dc9232f64762d55e059b1e76f44fd6ca344033</cites><orcidid>0000-0002-2789-1064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05402-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05402-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Thomas, Riya</creatorcontrib><creatorcontrib>Rao, Ashok</creatorcontrib><creatorcontrib>Jiang, Zhao-Ze</creatorcontrib><creatorcontrib>Kuo, Yung-Kang</creatorcontrib><title>Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Cu 2 SnSe 3 has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here, p -type pure and In-doped Cu 2 SnSe 3 samples are synthesized by the solid-state sintering technique. Cubic structure with F 4 ¯ 3 m space group is maintained for all the samples, and a linear increase in lattice parameter with increasing In concentration has been observed. The nature of electrical resistivity changes from semiconducting to metallic behavior for samples with x  &gt; 0.10. The decrease in both electrical resistivity and Seebeck coefficient with an increase in x is attributed to the increased hole concentration. Such a scenario is confirmed from the room-temperature Hall effect measurements. Indium doping also reduces the thermal conductivity of the Cu 2 SnSe 3 system as a result of increased phonon scattering due to the mass fluctuation. Concurrently, enhancement of thermoelectric power factor ( PF ) and figure of merit ( ZT ) is achieved with In doping at Sn site of Cu 2 SnSe 3 . The maximum ZT of 0.04 has been exhibited by the sample with x  = 0.25 at 400 K, which is six times higher than that of the undoped Cu 2 SnSe 3 .</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electromagnetism</subject><subject>Figure of merit</subject><subject>Hall effect</subject><subject>Heat conductivity</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Phonons</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Room temperature</subject><subject>Seebeck effect</subject><subject>Synergistic effect</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytZs9SvGjUPBQBW8hzU7qlna3Jlto_72pq3jzNMPM-7wzvIRcc7jlAOVd4mC0YiA4A61AsP0JGXFdSqaMeD8lI6h0yZQW4pxcpLQCgEJJMyJhfmgxLpvUN55iCOh72gU6bWndbZt2SbuW4jpPY-Pdmrq2pv0Hxk3ut7HbYuwbTEdishPzdo5yWHe_DE2H1OPmkpwFt0549VPH5O3x4XXyzGYvT9PJ_Yx5WcieGaWV855rzx2WYNxCC7dA54SpfSWkCIUqC1FrjaCrBceyCEqFuvBOKgVSjsnN4Juf-9xh6u2q28U2n7RCgwZTgTJZJQaVj11KEYPdxmbj4sFysMc87ZCnzXna7zztPkNygFIWt0uMf9b_UF-iR3n5</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Thomas, Riya</creator><creator>Rao, Ashok</creator><creator>Jiang, Zhao-Ze</creator><creator>Kuo, Yung-Kang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2789-1064</orcidid></search><sort><creationdate>20210301</creationdate><title>Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system</title><author>Thomas, Riya ; Rao, Ashok ; Jiang, Zhao-Ze ; Kuo, Yung-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8454acc15c1ae708ab52abeaa28dc9232f64762d55e059b1e76f44fd6ca344033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electromagnetism</topic><topic>Figure of merit</topic><topic>Hall effect</topic><topic>Heat conductivity</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Phonons</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Room temperature</topic><topic>Seebeck effect</topic><topic>Synergistic effect</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Riya</creatorcontrib><creatorcontrib>Rao, Ashok</creatorcontrib><creatorcontrib>Jiang, Zhao-Ze</creatorcontrib><creatorcontrib>Kuo, Yung-Kang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Riya</au><au>Rao, Ashok</au><au>Jiang, Zhao-Ze</au><au>Kuo, Yung-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>6955</spage><epage>6964</epage><pages>6955-6964</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Cu 2 SnSe 3 has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here, p -type pure and In-doped Cu 2 SnSe 3 samples are synthesized by the solid-state sintering technique. Cubic structure with F 4 ¯ 3 m space group is maintained for all the samples, and a linear increase in lattice parameter with increasing In concentration has been observed. The nature of electrical resistivity changes from semiconducting to metallic behavior for samples with x  &gt; 0.10. The decrease in both electrical resistivity and Seebeck coefficient with an increase in x is attributed to the increased hole concentration. Such a scenario is confirmed from the room-temperature Hall effect measurements. Indium doping also reduces the thermal conductivity of the Cu 2 SnSe 3 system as a result of increased phonon scattering due to the mass fluctuation. Concurrently, enhancement of thermoelectric power factor ( PF ) and figure of merit ( ZT ) is achieved with In doping at Sn site of Cu 2 SnSe 3 . The maximum ZT of 0.04 has been exhibited by the sample with x  = 0.25 at 400 K, which is six times higher than that of the undoped Cu 2 SnSe 3 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05402-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2789-1064</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.6955-6964
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2505089048
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Doping
Electrical resistivity
Electromagnetism
Figure of merit
Hall effect
Heat conductivity
Investigations
Materials Science
Optical and Electronic Materials
Phonons
Point defects
Power factor
Room temperature
Seebeck effect
Synergistic effect
Temperature
Thermal conductivity
Thermodynamic properties
Thermoelectric materials
Thermoelectricity
Transport properties
title Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20In%20doping%20on%20electrical%20and%20thermal%20properties%20of%20Cu2SnSe3%20thermoelectric%20system&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Thomas,%20Riya&rft.date=2021-03-01&rft.volume=32&rft.issue=6&rft.spage=6955&rft.epage=6964&rft.pages=6955-6964&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05402-x&rft_dat=%3Cproquest_cross%3E2505089048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505089048&rft_id=info:pmid/&rfr_iscdi=true