Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system
Cu 2 SnSe 3 has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here, p -type pure and In-doped Cu 2 SnSe 3 samples are synthesized by the solid-state sintering technique. Cubic structure w...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-03, Vol.32 (6), p.6955-6964 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6964 |
---|---|
container_issue | 6 |
container_start_page | 6955 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Thomas, Riya Rao, Ashok Jiang, Zhao-Ze Kuo, Yung-Kang |
description | Cu
2
SnSe
3
has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here,
p
-type pure and In-doped Cu
2
SnSe
3
samples are synthesized by the solid-state sintering technique. Cubic structure with
F
4
¯
3
m
space group is maintained for all the samples, and a linear increase in lattice parameter with increasing In concentration has been observed. The nature of electrical resistivity changes from semiconducting to metallic behavior for samples with
x
> 0.10. The decrease in both electrical resistivity and Seebeck coefficient with an increase in
x
is attributed to the increased hole concentration. Such a scenario is confirmed from the room-temperature Hall effect measurements. Indium doping also reduces the thermal conductivity of the Cu
2
SnSe
3
system as a result of increased phonon scattering due to the mass fluctuation. Concurrently, enhancement of thermoelectric power factor (
PF
) and figure of merit (
ZT
) is achieved with In doping at Sn site of Cu
2
SnSe
3
. The maximum
ZT
of 0.04 has been exhibited by the sample with
x
= 0.25 at 400 K, which is six times higher than that of the undoped Cu
2
SnSe
3
. |
doi_str_mv | 10.1007/s10854-021-05402-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2505089048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505089048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8454acc15c1ae708ab52abeaa28dc9232f64762d55e059b1e76f44fd6ca344033</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytZs9SvGjUPBQBW8hzU7qlna3Jlto_72pq3jzNMPM-7wzvIRcc7jlAOVd4mC0YiA4A61AsP0JGXFdSqaMeD8lI6h0yZQW4pxcpLQCgEJJMyJhfmgxLpvUN55iCOh72gU6bWndbZt2SbuW4jpPY-Pdmrq2pv0Hxk3ut7HbYuwbTEdishPzdo5yWHe_DE2H1OPmkpwFt0549VPH5O3x4XXyzGYvT9PJ_Yx5WcieGaWV855rzx2WYNxCC7dA54SpfSWkCIUqC1FrjaCrBceyCEqFuvBOKgVSjsnN4Juf-9xh6u2q28U2n7RCgwZTgTJZJQaVj11KEYPdxmbj4sFysMc87ZCnzXna7zztPkNygFIWt0uMf9b_UF-iR3n5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505089048</pqid></control><display><type>article</type><title>Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system</title><source>Springer Nature - Complete Springer Journals</source><creator>Thomas, Riya ; Rao, Ashok ; Jiang, Zhao-Ze ; Kuo, Yung-Kang</creator><creatorcontrib>Thomas, Riya ; Rao, Ashok ; Jiang, Zhao-Ze ; Kuo, Yung-Kang</creatorcontrib><description>Cu
2
SnSe
3
has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here,
p
-type pure and In-doped Cu
2
SnSe
3
samples are synthesized by the solid-state sintering technique. Cubic structure with
F
4
¯
3
m
space group is maintained for all the samples, and a linear increase in lattice parameter with increasing In concentration has been observed. The nature of electrical resistivity changes from semiconducting to metallic behavior for samples with
x
> 0.10. The decrease in both electrical resistivity and Seebeck coefficient with an increase in
x
is attributed to the increased hole concentration. Such a scenario is confirmed from the room-temperature Hall effect measurements. Indium doping also reduces the thermal conductivity of the Cu
2
SnSe
3
system as a result of increased phonon scattering due to the mass fluctuation. Concurrently, enhancement of thermoelectric power factor (
PF
) and figure of merit (
ZT
) is achieved with In doping at Sn site of Cu
2
SnSe
3
. The maximum
ZT
of 0.04 has been exhibited by the sample with
x
= 0.25 at 400 K, which is six times higher than that of the undoped Cu
2
SnSe
3
.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05402-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Doping ; Electrical resistivity ; Electromagnetism ; Figure of merit ; Hall effect ; Heat conductivity ; Investigations ; Materials Science ; Optical and Electronic Materials ; Phonons ; Point defects ; Power factor ; Room temperature ; Seebeck effect ; Synergistic effect ; Temperature ; Thermal conductivity ; Thermodynamic properties ; Thermoelectric materials ; Thermoelectricity ; Transport properties</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.6955-6964</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8454acc15c1ae708ab52abeaa28dc9232f64762d55e059b1e76f44fd6ca344033</citedby><cites>FETCH-LOGICAL-c363t-8454acc15c1ae708ab52abeaa28dc9232f64762d55e059b1e76f44fd6ca344033</cites><orcidid>0000-0002-2789-1064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05402-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05402-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Thomas, Riya</creatorcontrib><creatorcontrib>Rao, Ashok</creatorcontrib><creatorcontrib>Jiang, Zhao-Ze</creatorcontrib><creatorcontrib>Kuo, Yung-Kang</creatorcontrib><title>Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Cu
2
SnSe
3
has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here,
p
-type pure and In-doped Cu
2
SnSe
3
samples are synthesized by the solid-state sintering technique. Cubic structure with
F
4
¯
3
m
space group is maintained for all the samples, and a linear increase in lattice parameter with increasing In concentration has been observed. The nature of electrical resistivity changes from semiconducting to metallic behavior for samples with
x
> 0.10. The decrease in both electrical resistivity and Seebeck coefficient with an increase in
x
is attributed to the increased hole concentration. Such a scenario is confirmed from the room-temperature Hall effect measurements. Indium doping also reduces the thermal conductivity of the Cu
2
SnSe
3
system as a result of increased phonon scattering due to the mass fluctuation. Concurrently, enhancement of thermoelectric power factor (
PF
) and figure of merit (
ZT
) is achieved with In doping at Sn site of Cu
2
SnSe
3
. The maximum
ZT
of 0.04 has been exhibited by the sample with
x
= 0.25 at 400 K, which is six times higher than that of the undoped Cu
2
SnSe
3
.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Electromagnetism</subject><subject>Figure of merit</subject><subject>Hall effect</subject><subject>Heat conductivity</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Phonons</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Room temperature</subject><subject>Seebeck effect</subject><subject>Synergistic effect</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TytZs9SvGjUPBQBW8hzU7qlna3Jlto_72pq3jzNMPM-7wzvIRcc7jlAOVd4mC0YiA4A61AsP0JGXFdSqaMeD8lI6h0yZQW4pxcpLQCgEJJMyJhfmgxLpvUN55iCOh72gU6bWndbZt2SbuW4jpPY-Pdmrq2pv0Hxk3ut7HbYuwbTEdishPzdo5yWHe_DE2H1OPmkpwFt0549VPH5O3x4XXyzGYvT9PJ_Yx5WcieGaWV855rzx2WYNxCC7dA54SpfSWkCIUqC1FrjaCrBceyCEqFuvBOKgVSjsnN4Juf-9xh6u2q28U2n7RCgwZTgTJZJQaVj11KEYPdxmbj4sFysMc87ZCnzXna7zztPkNygFIWt0uMf9b_UF-iR3n5</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Thomas, Riya</creator><creator>Rao, Ashok</creator><creator>Jiang, Zhao-Ze</creator><creator>Kuo, Yung-Kang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2789-1064</orcidid></search><sort><creationdate>20210301</creationdate><title>Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system</title><author>Thomas, Riya ; Rao, Ashok ; Jiang, Zhao-Ze ; Kuo, Yung-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8454acc15c1ae708ab52abeaa28dc9232f64762d55e059b1e76f44fd6ca344033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Electromagnetism</topic><topic>Figure of merit</topic><topic>Hall effect</topic><topic>Heat conductivity</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Phonons</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Room temperature</topic><topic>Seebeck effect</topic><topic>Synergistic effect</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Riya</creatorcontrib><creatorcontrib>Rao, Ashok</creatorcontrib><creatorcontrib>Jiang, Zhao-Ze</creatorcontrib><creatorcontrib>Kuo, Yung-Kang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Riya</au><au>Rao, Ashok</au><au>Jiang, Zhao-Ze</au><au>Kuo, Yung-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>6</issue><spage>6955</spage><epage>6964</epage><pages>6955-6964</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Cu
2
SnSe
3
has been considered as a potential thermoelectric material owing to its tunable transport properties and its phonon-glass-electron-crystal (PGEC) characteristics. Here,
p
-type pure and In-doped Cu
2
SnSe
3
samples are synthesized by the solid-state sintering technique. Cubic structure with
F
4
¯
3
m
space group is maintained for all the samples, and a linear increase in lattice parameter with increasing In concentration has been observed. The nature of electrical resistivity changes from semiconducting to metallic behavior for samples with
x
> 0.10. The decrease in both electrical resistivity and Seebeck coefficient with an increase in
x
is attributed to the increased hole concentration. Such a scenario is confirmed from the room-temperature Hall effect measurements. Indium doping also reduces the thermal conductivity of the Cu
2
SnSe
3
system as a result of increased phonon scattering due to the mass fluctuation. Concurrently, enhancement of thermoelectric power factor (
PF
) and figure of merit (
ZT
) is achieved with In doping at Sn site of Cu
2
SnSe
3
. The maximum
ZT
of 0.04 has been exhibited by the sample with
x
= 0.25 at 400 K, which is six times higher than that of the undoped Cu
2
SnSe
3
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05402-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2789-1064</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-03, Vol.32 (6), p.6955-6964 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2505089048 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Doping Electrical resistivity Electromagnetism Figure of merit Hall effect Heat conductivity Investigations Materials Science Optical and Electronic Materials Phonons Point defects Power factor Room temperature Seebeck effect Synergistic effect Temperature Thermal conductivity Thermodynamic properties Thermoelectric materials Thermoelectricity Transport properties |
title | Synergistic effect of In doping on electrical and thermal properties of Cu2SnSe3 thermoelectric system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20In%20doping%20on%20electrical%20and%20thermal%20properties%20of%20Cu2SnSe3%20thermoelectric%20system&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Thomas,%20Riya&rft.date=2021-03-01&rft.volume=32&rft.issue=6&rft.spage=6955&rft.epage=6964&rft.pages=6955-6964&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05402-x&rft_dat=%3Cproquest_cross%3E2505089048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505089048&rft_id=info:pmid/&rfr_iscdi=true |