Towards Optimal Algorithms for Multi-Player Bandits without Collision Sensing Information

We propose a novel algorithm for multi-player multi-armed bandits without collision sensing information. Our algorithm circumvents two problems shared by all state-of-the-art algorithms: it does not need as an input a lower bound on the minimal expected reward of an arm, and its performance does not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Huang, Wei, Combes, Richard, Trinh, Cindy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Huang, Wei
Combes, Richard
Trinh, Cindy
description We propose a novel algorithm for multi-player multi-armed bandits without collision sensing information. Our algorithm circumvents two problems shared by all state-of-the-art algorithms: it does not need as an input a lower bound on the minimal expected reward of an arm, and its performance does not scale inversely proportionally to the minimal expected reward. We prove a theoretical regret upper bound to justify these claims. We complement our theoretical results with numerical experiments, showing that the proposed algorithm outperforms state-of-the-art in practice as well.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2505022086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505022086</sourcerecordid><originalsourceid>FETCH-proquest_journals_25050220863</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMgWLTvcMG5EBNTu2pRdBAFuziVQH9MSZOam1J8ezP4AE4HvvOdGYkY55sk2zK2IDFiRyll6Y4JwSPyLOwkXYVwG7zqpYa9bq1T_tUjNNbBddReJXctP7WDgzSV8ghT8Hb0kFutFSpr4FEbVKaFiwlRL33YVmTeSI11_OOSrE_HIj8ng7PvsUZfdnZ0JqiSCSooYzRL-X-vLzEZQtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505022086</pqid></control><display><type>article</type><title>Towards Optimal Algorithms for Multi-Player Bandits without Collision Sensing Information</title><source>Free E- Journals</source><creator>Huang, Wei ; Combes, Richard ; Trinh, Cindy</creator><creatorcontrib>Huang, Wei ; Combes, Richard ; Trinh, Cindy</creatorcontrib><description>We propose a novel algorithm for multi-player multi-armed bandits without collision sensing information. Our algorithm circumvents two problems shared by all state-of-the-art algorithms: it does not need as an input a lower bound on the minimal expected reward of an arm, and its performance does not scale inversely proportionally to the minimal expected reward. We prove a theoretical regret upper bound to justify these claims. We complement our theoretical results with numerical experiments, showing that the proposed algorithm outperforms state-of-the-art in practice as well.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Lower bounds ; Upper bounds</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Combes, Richard</creatorcontrib><creatorcontrib>Trinh, Cindy</creatorcontrib><title>Towards Optimal Algorithms for Multi-Player Bandits without Collision Sensing Information</title><title>arXiv.org</title><description>We propose a novel algorithm for multi-player multi-armed bandits without collision sensing information. Our algorithm circumvents two problems shared by all state-of-the-art algorithms: it does not need as an input a lower bound on the minimal expected reward of an arm, and its performance does not scale inversely proportionally to the minimal expected reward. We prove a theoretical regret upper bound to justify these claims. We complement our theoretical results with numerical experiments, showing that the proposed algorithm outperforms state-of-the-art in practice as well.</description><subject>Algorithms</subject><subject>Lower bounds</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAURoMgWLTvcMG5EBNTu2pRdBAFuziVQH9MSZOam1J8ezP4AE4HvvOdGYkY55sk2zK2IDFiRyll6Y4JwSPyLOwkXYVwG7zqpYa9bq1T_tUjNNbBddReJXctP7WDgzSV8ghT8Hb0kFutFSpr4FEbVKaFiwlRL33YVmTeSI11_OOSrE_HIj8ng7PvsUZfdnZ0JqiSCSooYzRL-X-vLzEZQtw</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Huang, Wei</creator><creator>Combes, Richard</creator><creator>Trinh, Cindy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220606</creationdate><title>Towards Optimal Algorithms for Multi-Player Bandits without Collision Sensing Information</title><author>Huang, Wei ; Combes, Richard ; Trinh, Cindy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25050220863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Lower bounds</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Combes, Richard</creatorcontrib><creatorcontrib>Trinh, Cindy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wei</au><au>Combes, Richard</au><au>Trinh, Cindy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Optimal Algorithms for Multi-Player Bandits without Collision Sensing Information</atitle><jtitle>arXiv.org</jtitle><date>2022-06-06</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We propose a novel algorithm for multi-player multi-armed bandits without collision sensing information. Our algorithm circumvents two problems shared by all state-of-the-art algorithms: it does not need as an input a lower bound on the minimal expected reward of an arm, and its performance does not scale inversely proportionally to the minimal expected reward. We prove a theoretical regret upper bound to justify these claims. We complement our theoretical results with numerical experiments, showing that the proposed algorithm outperforms state-of-the-art in practice as well.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2505022086
source Free E- Journals
subjects Algorithms
Lower bounds
Upper bounds
title Towards Optimal Algorithms for Multi-Player Bandits without Collision Sensing Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Optimal%20Algorithms%20for%20Multi-Player%20Bandits%20without%20Collision%20Sensing%20Information&rft.jtitle=arXiv.org&rft.au=Huang,%20Wei&rft.date=2022-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2505022086%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505022086&rft_id=info:pmid/&rfr_iscdi=true