Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement

[Display omitted] •Plasmonic Au@CeO2 CSNPs are fabricated for visible-light-driven HER activity.•HER rate of Au@CeO2-18 (shell thickness of 18 nm) is ∼10 times higher than that of CeO2.•Au@CeO2-18 delivers long-term HER stability after several repetitive tests over 20 h.•Synergistic effect of Au and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2021-06, Vol.286, p.119947, Article 119947
Hauptverfasser: Dao, Dung Van, Nguyen, Thuy T.D., Uthirakumar, Periyayya, Cho, Yeong-Hoon, Kim, Gyu-Cheol, Yang, Jin-Kyu, Tran, Duy-Thanh, Le, Thanh Duc, Choi, Hyuk, Kim, Hyun You, Yu, Yeon-Tae, Lee, In-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119947
container_title Applied catalysis. B, Environmental
container_volume 286
creator Dao, Dung Van
Nguyen, Thuy T.D.
Uthirakumar, Periyayya
Cho, Yeong-Hoon
Kim, Gyu-Cheol
Yang, Jin-Kyu
Tran, Duy-Thanh
Le, Thanh Duc
Choi, Hyuk
Kim, Hyun You
Yu, Yeon-Tae
Lee, In-Hwan
description [Display omitted] •Plasmonic Au@CeO2 CSNPs are fabricated for visible-light-driven HER activity.•HER rate of Au@CeO2-18 (shell thickness of 18 nm) is ∼10 times higher than that of CeO2.•Au@CeO2-18 delivers long-term HER stability after several repetitive tests over 20 h.•Synergistic effect of Au and CeO2 is discussed based on the excitation and decay of LSPR.•Experiments are supported by theoretical investigations as well. Plasmonic metal@semiconductor core–shell nanoparticles (CSNPs) are considered as promising candidates for artificial photosynthesis. Herein, Au@CeO2 CSNPs are hydrothermally fabricated for photocatalytic hydrogen evolution reaction (HER). CSNPs deliver superior HER performance compared to free CeO2. In particular, Au@CeO2-18 model (shell thickness of 18 nm) produces an HER rate of 4.05 μmol mg–1 h–1, which is ∼10 times higher than that of pure CeO2 (0.40 μmol mg–1 h–1) under visible-light. Additionally, Au@CeO2-18 photocatalyst demonstrates long-term stability after five repetitive runs, at which point it only loses approximately 5% of the activity, while core-free CeO2 decreases by 37.5 %. Such improvements are attributed to the electronic interactions between Au and CeO2, which not only enriches Ce3+ active sites to narrow bandgap of ceria toward visible, but also increases the affinity for hydrogen ions on the CSNPs surface. Moreover, localized surface plasmon resonance is light-excited and decays to efficiently produce hot-carrier to drive catalytic reactions.
doi_str_mv 10.1016/j.apcatb.2021.119947
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504813830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337321000734</els_id><sourcerecordid>2504813830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-aaa0d2adb9aec1f5c8dac9e751db48a717c9f030e341ec774256fc0bf39cec9a3</originalsourceid><addsrcrecordid>eNp9kU1u2zAQhYmiAeqmuUEWBLKWwx_ZkjZBA6P5AQJkk66JMTm0acikSlIGvOsdcoGerScJHWWd1QCDN-_NzEfIJWdzzvjyejeHQUNezwUTfM5519XNFzLjbSMr2bbyK5mxTiwrKRv5jXxPaccYE1K0M_Lv0Se32WY79nT0BmPK4I3zGxos3YZcaYjRYaQb9Bghu-BpEdAcwSdb-s7ToYe0D95pejv-XOGzoDpE_P_3NW2x7-lQbEJZD_pjyonaEGl_iqxMdAf0dHs0MRR7iofQj-8Jbj_EcMA9-vyDnFnoE1581HPy--7Xy-qhenq-f1zdPlVayjpXAMCMALPuADW3C90a0B02C27WdQsNb3RnmWQoa466aWqxWFrN1lZ2GnUH8pxcTb4l-c-IKatdGKMvkUosWN1y2UpWVPWk0jGkFNGqIbo9xKPiTJ1YqJ2aWKgTCzWxKGM30xiWCw7lnSpph16jcRF1Via4zw3eAHRWmxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504813830</pqid></control><display><type>article</type><title>Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dao, Dung Van ; Nguyen, Thuy T.D. ; Uthirakumar, Periyayya ; Cho, Yeong-Hoon ; Kim, Gyu-Cheol ; Yang, Jin-Kyu ; Tran, Duy-Thanh ; Le, Thanh Duc ; Choi, Hyuk ; Kim, Hyun You ; Yu, Yeon-Tae ; Lee, In-Hwan</creator><creatorcontrib>Dao, Dung Van ; Nguyen, Thuy T.D. ; Uthirakumar, Periyayya ; Cho, Yeong-Hoon ; Kim, Gyu-Cheol ; Yang, Jin-Kyu ; Tran, Duy-Thanh ; Le, Thanh Duc ; Choi, Hyuk ; Kim, Hyun You ; Yu, Yeon-Tae ; Lee, In-Hwan</creatorcontrib><description>[Display omitted] •Plasmonic Au@CeO2 CSNPs are fabricated for visible-light-driven HER activity.•HER rate of Au@CeO2-18 (shell thickness of 18 nm) is ∼10 times higher than that of CeO2.•Au@CeO2-18 delivers long-term HER stability after several repetitive tests over 20 h.•Synergistic effect of Au and CeO2 is discussed based on the excitation and decay of LSPR.•Experiments are supported by theoretical investigations as well. Plasmonic metal@semiconductor core–shell nanoparticles (CSNPs) are considered as promising candidates for artificial photosynthesis. Herein, Au@CeO2 CSNPs are hydrothermally fabricated for photocatalytic hydrogen evolution reaction (HER). CSNPs deliver superior HER performance compared to free CeO2. In particular, Au@CeO2-18 model (shell thickness of 18 nm) produces an HER rate of 4.05 μmol mg–1 h–1, which is ∼10 times higher than that of pure CeO2 (0.40 μmol mg–1 h–1) under visible-light. Additionally, Au@CeO2-18 photocatalyst demonstrates long-term stability after five repetitive runs, at which point it only loses approximately 5% of the activity, while core-free CeO2 decreases by 37.5 %. Such improvements are attributed to the electronic interactions between Au and CeO2, which not only enriches Ce3+ active sites to narrow bandgap of ceria toward visible, but also increases the affinity for hydrogen ions on the CSNPs surface. Moreover, localized surface plasmon resonance is light-excited and decays to efficiently produce hot-carrier to drive catalytic reactions.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2021.119947</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Au@CeO2core–shell ; Cerium oxides ; Core-shell particles ; Gold ; Hot-carrier ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen ions ; Hydrogen production ; Nanoparticles ; Photocatalysis ; Photocatalyst ; Photocatalysts ; Photosynthesis ; Plasmonic ; Plasmonics ; Surface plasmon resonance</subject><ispartof>Applied catalysis. B, Environmental, 2021-06, Vol.286, p.119947, Article 119947</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-aaa0d2adb9aec1f5c8dac9e751db48a717c9f030e341ec774256fc0bf39cec9a3</citedby><cites>FETCH-LOGICAL-c334t-aaa0d2adb9aec1f5c8dac9e751db48a717c9f030e341ec774256fc0bf39cec9a3</cites><orcidid>0000-0002-7907-2626 ; 0000-0002-7899-2631 ; 0000-0003-4566-9181 ; 0000-0003-3843-5264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2021.119947$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dao, Dung Van</creatorcontrib><creatorcontrib>Nguyen, Thuy T.D.</creatorcontrib><creatorcontrib>Uthirakumar, Periyayya</creatorcontrib><creatorcontrib>Cho, Yeong-Hoon</creatorcontrib><creatorcontrib>Kim, Gyu-Cheol</creatorcontrib><creatorcontrib>Yang, Jin-Kyu</creatorcontrib><creatorcontrib>Tran, Duy-Thanh</creatorcontrib><creatorcontrib>Le, Thanh Duc</creatorcontrib><creatorcontrib>Choi, Hyuk</creatorcontrib><creatorcontrib>Kim, Hyun You</creatorcontrib><creatorcontrib>Yu, Yeon-Tae</creatorcontrib><creatorcontrib>Lee, In-Hwan</creatorcontrib><title>Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Plasmonic Au@CeO2 CSNPs are fabricated for visible-light-driven HER activity.•HER rate of Au@CeO2-18 (shell thickness of 18 nm) is ∼10 times higher than that of CeO2.•Au@CeO2-18 delivers long-term HER stability after several repetitive tests over 20 h.•Synergistic effect of Au and CeO2 is discussed based on the excitation and decay of LSPR.•Experiments are supported by theoretical investigations as well. Plasmonic metal@semiconductor core–shell nanoparticles (CSNPs) are considered as promising candidates for artificial photosynthesis. Herein, Au@CeO2 CSNPs are hydrothermally fabricated for photocatalytic hydrogen evolution reaction (HER). CSNPs deliver superior HER performance compared to free CeO2. In particular, Au@CeO2-18 model (shell thickness of 18 nm) produces an HER rate of 4.05 μmol mg–1 h–1, which is ∼10 times higher than that of pure CeO2 (0.40 μmol mg–1 h–1) under visible-light. Additionally, Au@CeO2-18 photocatalyst demonstrates long-term stability after five repetitive runs, at which point it only loses approximately 5% of the activity, while core-free CeO2 decreases by 37.5 %. Such improvements are attributed to the electronic interactions between Au and CeO2, which not only enriches Ce3+ active sites to narrow bandgap of ceria toward visible, but also increases the affinity for hydrogen ions on the CSNPs surface. Moreover, localized surface plasmon resonance is light-excited and decays to efficiently produce hot-carrier to drive catalytic reactions.</description><subject>Au@CeO2core–shell</subject><subject>Cerium oxides</subject><subject>Core-shell particles</subject><subject>Gold</subject><subject>Hot-carrier</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen ions</subject><subject>Hydrogen production</subject><subject>Nanoparticles</subject><subject>Photocatalysis</subject><subject>Photocatalyst</subject><subject>Photocatalysts</subject><subject>Photosynthesis</subject><subject>Plasmonic</subject><subject>Plasmonics</subject><subject>Surface plasmon resonance</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1u2zAQhYmiAeqmuUEWBLKWwx_ZkjZBA6P5AQJkk66JMTm0acikSlIGvOsdcoGerScJHWWd1QCDN-_NzEfIJWdzzvjyejeHQUNezwUTfM5519XNFzLjbSMr2bbyK5mxTiwrKRv5jXxPaccYE1K0M_Lv0Se32WY79nT0BmPK4I3zGxos3YZcaYjRYaQb9Bghu-BpEdAcwSdb-s7ToYe0D95pejv-XOGzoDpE_P_3NW2x7-lQbEJZD_pjyonaEGl_iqxMdAf0dHs0MRR7iofQj-8Jbj_EcMA9-vyDnFnoE1581HPy--7Xy-qhenq-f1zdPlVayjpXAMCMALPuADW3C90a0B02C27WdQsNb3RnmWQoa466aWqxWFrN1lZ2GnUH8pxcTb4l-c-IKatdGKMvkUosWN1y2UpWVPWk0jGkFNGqIbo9xKPiTJ1YqJ2aWKgTCzWxKGM30xiWCw7lnSpph16jcRF1Via4zw3eAHRWmxI</recordid><startdate>20210605</startdate><enddate>20210605</enddate><creator>Dao, Dung Van</creator><creator>Nguyen, Thuy T.D.</creator><creator>Uthirakumar, Periyayya</creator><creator>Cho, Yeong-Hoon</creator><creator>Kim, Gyu-Cheol</creator><creator>Yang, Jin-Kyu</creator><creator>Tran, Duy-Thanh</creator><creator>Le, Thanh Duc</creator><creator>Choi, Hyuk</creator><creator>Kim, Hyun You</creator><creator>Yu, Yeon-Tae</creator><creator>Lee, In-Hwan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7907-2626</orcidid><orcidid>https://orcid.org/0000-0002-7899-2631</orcidid><orcidid>https://orcid.org/0000-0003-4566-9181</orcidid><orcidid>https://orcid.org/0000-0003-3843-5264</orcidid></search><sort><creationdate>20210605</creationdate><title>Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement</title><author>Dao, Dung Van ; Nguyen, Thuy T.D. ; Uthirakumar, Periyayya ; Cho, Yeong-Hoon ; Kim, Gyu-Cheol ; Yang, Jin-Kyu ; Tran, Duy-Thanh ; Le, Thanh Duc ; Choi, Hyuk ; Kim, Hyun You ; Yu, Yeon-Tae ; Lee, In-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-aaa0d2adb9aec1f5c8dac9e751db48a717c9f030e341ec774256fc0bf39cec9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Au@CeO2core–shell</topic><topic>Cerium oxides</topic><topic>Core-shell particles</topic><topic>Gold</topic><topic>Hot-carrier</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen ions</topic><topic>Hydrogen production</topic><topic>Nanoparticles</topic><topic>Photocatalysis</topic><topic>Photocatalyst</topic><topic>Photocatalysts</topic><topic>Photosynthesis</topic><topic>Plasmonic</topic><topic>Plasmonics</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dao, Dung Van</creatorcontrib><creatorcontrib>Nguyen, Thuy T.D.</creatorcontrib><creatorcontrib>Uthirakumar, Periyayya</creatorcontrib><creatorcontrib>Cho, Yeong-Hoon</creatorcontrib><creatorcontrib>Kim, Gyu-Cheol</creatorcontrib><creatorcontrib>Yang, Jin-Kyu</creatorcontrib><creatorcontrib>Tran, Duy-Thanh</creatorcontrib><creatorcontrib>Le, Thanh Duc</creatorcontrib><creatorcontrib>Choi, Hyuk</creatorcontrib><creatorcontrib>Kim, Hyun You</creatorcontrib><creatorcontrib>Yu, Yeon-Tae</creatorcontrib><creatorcontrib>Lee, In-Hwan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dao, Dung Van</au><au>Nguyen, Thuy T.D.</au><au>Uthirakumar, Periyayya</au><au>Cho, Yeong-Hoon</au><au>Kim, Gyu-Cheol</au><au>Yang, Jin-Kyu</au><au>Tran, Duy-Thanh</au><au>Le, Thanh Duc</au><au>Choi, Hyuk</au><au>Kim, Hyun You</au><au>Yu, Yeon-Tae</au><au>Lee, In-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2021-06-05</date><risdate>2021</risdate><volume>286</volume><spage>119947</spage><pages>119947-</pages><artnum>119947</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Plasmonic Au@CeO2 CSNPs are fabricated for visible-light-driven HER activity.•HER rate of Au@CeO2-18 (shell thickness of 18 nm) is ∼10 times higher than that of CeO2.•Au@CeO2-18 delivers long-term HER stability after several repetitive tests over 20 h.•Synergistic effect of Au and CeO2 is discussed based on the excitation and decay of LSPR.•Experiments are supported by theoretical investigations as well. Plasmonic metal@semiconductor core–shell nanoparticles (CSNPs) are considered as promising candidates for artificial photosynthesis. Herein, Au@CeO2 CSNPs are hydrothermally fabricated for photocatalytic hydrogen evolution reaction (HER). CSNPs deliver superior HER performance compared to free CeO2. In particular, Au@CeO2-18 model (shell thickness of 18 nm) produces an HER rate of 4.05 μmol mg–1 h–1, which is ∼10 times higher than that of pure CeO2 (0.40 μmol mg–1 h–1) under visible-light. Additionally, Au@CeO2-18 photocatalyst demonstrates long-term stability after five repetitive runs, at which point it only loses approximately 5% of the activity, while core-free CeO2 decreases by 37.5 %. Such improvements are attributed to the electronic interactions between Au and CeO2, which not only enriches Ce3+ active sites to narrow bandgap of ceria toward visible, but also increases the affinity for hydrogen ions on the CSNPs surface. Moreover, localized surface plasmon resonance is light-excited and decays to efficiently produce hot-carrier to drive catalytic reactions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2021.119947</doi><orcidid>https://orcid.org/0000-0002-7907-2626</orcidid><orcidid>https://orcid.org/0000-0002-7899-2631</orcidid><orcidid>https://orcid.org/0000-0003-4566-9181</orcidid><orcidid>https://orcid.org/0000-0003-3843-5264</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2021-06, Vol.286, p.119947, Article 119947
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2504813830
source Elsevier ScienceDirect Journals Complete
subjects Au@CeO2core–shell
Cerium oxides
Core-shell particles
Gold
Hot-carrier
Hydrogen
Hydrogen evolution reactions
Hydrogen ions
Hydrogen production
Nanoparticles
Photocatalysis
Photocatalyst
Photocatalysts
Photosynthesis
Plasmonic
Plasmonics
Surface plasmon resonance
title Insightful understanding of hot-carrier generation and transfer in plasmonic Au@CeO2 core–shell photocatalysts for light-driven hydrogen evolution improvement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insightful%20understanding%20of%20hot-carrier%20generation%20and%20transfer%20in%20plasmonic%20Au@CeO2%20core%E2%80%93shell%20photocatalysts%20for%20light-driven%20hydrogen%20evolution%20improvement&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Dao,%20Dung%20Van&rft.date=2021-06-05&rft.volume=286&rft.spage=119947&rft.pages=119947-&rft.artnum=119947&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2021.119947&rft_dat=%3Cproquest_cross%3E2504813830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504813830&rft_id=info:pmid/&rft_els_id=S0926337321000734&rfr_iscdi=true