Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries

The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-05, Vol.864, p.158177, Article 158177
Hauptverfasser: Xiang, Yanhong, Huang, Meiyun, Jiang, Youliang, Liu, Saiqiu, Li, Jian, Wu, Jianhua, Liu, Zhixiong, Zhu, Ling, Wu, Xianwen, He, Zeqiang, Xiong, Lizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 158177
container_title Journal of alloys and compounds
container_volume 864
creator Xiang, Yanhong
Huang, Meiyun
Jiang, Youliang
Liu, Saiqiu
Li, Jian
Wu, Jianhua
Liu, Zhixiong
Zhu, Ling
Wu, Xianwen
He, Zeqiang
Xiong, Lizhi
description The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials are characterized by XRD, SEM, TEM and electrochemical measurements. Compared with the original sample, the unique micro-morphology and better layered structure and less cation mixing of the obtained compounds with [BMIm]Cl ionic liquid give the material a sufficient contact between the solid/liquid interface (electrode and electrolyte) and facilitated the process of Li+ intercalation/deintercalation, which availing to improved electrochemical kinetics properties with excellent rate capability and remarkable cycling stability. The analysis of the kinetics of electrode reaction (EIS) proved that the charge transfer resistance value can be decreased by adding appropriate amount of [BMIm]Cl ionic liquid, and thus reduce the diffusion pathways of Li+ ions and electrons, which is well consistent with the rate capability test results. Specifically, when the amount of the [BMIm]Cl ionic liquid reaches 0.5 g, the 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 exhibited a higher initial capacity of 269.7 mAh g−1, and the capacity retention after 65 cycles was 93.0%. •0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 were fabricated via a hydrothermal strategy with assistant of [BMIm]Cl ionic liquid.•[BMIm]Cl ionic liquid shows significant effect on the morphology and structure.•The obtained compounds exhibited an excellent cycling and rate capability.
doi_str_mv 10.1016/j.jallcom.2020.158177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504813022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820345400</els_id><sourcerecordid>2504813022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-b98caed24e447c2829dfbf11da014c69404d11ff516cec3cd55fe972e56703e53</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIFninGA7ceKcEKp4VGrpBc5Waq-poyRu7QSpX8adL8OlvXPZWe3OzGoHoVtKUkpocd-kTd22ynUpIyzOuKBleYYmVJRZkhdFdY4mpGI8EZkQl-gqhIYQQquMTtDn3PVW4dbuRqtxHYINA2i82Wvvhg34rm5x2PexjRvsDCYpX1i27FfZz_df_2YjLPtYVgwb56PXsLFjh63r8boeBvAWwjW6MHUb4OaEU_Tx_PQ-e00Wq5f57HGRKMbZkKwroWrQLIc8LxUTrNJmbSjVNaG5Kqqc5JpSYzgtFKhMac4NVCUDXpQkA55N0d3Rd-vdboQwyMaNvo8nJeMkFzQjjEUWP7KUdyF4MHLrbVf7vaREHjKVjTxlKg-ZymOmUfdw1EF84cuCl0FZ6BVo60ENUjv7j8Mvd5KB5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504813022</pqid></control><display><type>article</type><title>Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xiang, Yanhong ; Huang, Meiyun ; Jiang, Youliang ; Liu, Saiqiu ; Li, Jian ; Wu, Jianhua ; Liu, Zhixiong ; Zhu, Ling ; Wu, Xianwen ; He, Zeqiang ; Xiong, Lizhi</creator><creatorcontrib>Xiang, Yanhong ; Huang, Meiyun ; Jiang, Youliang ; Liu, Saiqiu ; Li, Jian ; Wu, Jianhua ; Liu, Zhixiong ; Zhu, Ling ; Wu, Xianwen ; He, Zeqiang ; Xiong, Lizhi</creatorcontrib><description>The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials are characterized by XRD, SEM, TEM and electrochemical measurements. Compared with the original sample, the unique micro-morphology and better layered structure and less cation mixing of the obtained compounds with [BMIm]Cl ionic liquid give the material a sufficient contact between the solid/liquid interface (electrode and electrolyte) and facilitated the process of Li+ intercalation/deintercalation, which availing to improved electrochemical kinetics properties with excellent rate capability and remarkable cycling stability. The analysis of the kinetics of electrode reaction (EIS) proved that the charge transfer resistance value can be decreased by adding appropriate amount of [BMIm]Cl ionic liquid, and thus reduce the diffusion pathways of Li+ ions and electrons, which is well consistent with the rate capability test results. Specifically, when the amount of the [BMIm]Cl ionic liquid reaches 0.5 g, the 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 exhibited a higher initial capacity of 269.7 mAh g−1, and the capacity retention after 65 cycles was 93.0%. •0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 were fabricated via a hydrothermal strategy with assistant of [BMIm]Cl ionic liquid.•[BMIm]Cl ionic liquid shows significant effect on the morphology and structure.•The obtained compounds exhibited an excellent cycling and rate capability.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.158177</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cathode Materials ; Cathodes ; Charge transfer ; Electrode materials ; Hydrothermal ; Ionic liquid ; Ionic liquids ; Ions ; Kinetics ; Li-rich Mn-based ; Lithium ; Lithium ion battery ; Lithium-ion batteries ; Manganese ; Morphology ; Rechargeable batteries ; Stability analysis</subject><ispartof>Journal of alloys and compounds, 2021-05, Vol.864, p.158177, Article 158177</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-b98caed24e447c2829dfbf11da014c69404d11ff516cec3cd55fe972e56703e53</citedby><cites>FETCH-LOGICAL-c252t-b98caed24e447c2829dfbf11da014c69404d11ff516cec3cd55fe972e56703e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.158177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xiang, Yanhong</creatorcontrib><creatorcontrib>Huang, Meiyun</creatorcontrib><creatorcontrib>Jiang, Youliang</creatorcontrib><creatorcontrib>Liu, Saiqiu</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Wu, Jianhua</creatorcontrib><creatorcontrib>Liu, Zhixiong</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Wu, Xianwen</creatorcontrib><creatorcontrib>He, Zeqiang</creatorcontrib><creatorcontrib>Xiong, Lizhi</creatorcontrib><title>Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries</title><title>Journal of alloys and compounds</title><description>The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials are characterized by XRD, SEM, TEM and electrochemical measurements. Compared with the original sample, the unique micro-morphology and better layered structure and less cation mixing of the obtained compounds with [BMIm]Cl ionic liquid give the material a sufficient contact between the solid/liquid interface (electrode and electrolyte) and facilitated the process of Li+ intercalation/deintercalation, which availing to improved electrochemical kinetics properties with excellent rate capability and remarkable cycling stability. The analysis of the kinetics of electrode reaction (EIS) proved that the charge transfer resistance value can be decreased by adding appropriate amount of [BMIm]Cl ionic liquid, and thus reduce the diffusion pathways of Li+ ions and electrons, which is well consistent with the rate capability test results. Specifically, when the amount of the [BMIm]Cl ionic liquid reaches 0.5 g, the 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 exhibited a higher initial capacity of 269.7 mAh g−1, and the capacity retention after 65 cycles was 93.0%. •0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 were fabricated via a hydrothermal strategy with assistant of [BMIm]Cl ionic liquid.•[BMIm]Cl ionic liquid shows significant effect on the morphology and structure.•The obtained compounds exhibited an excellent cycling and rate capability.</description><subject>Cathode Materials</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Electrode materials</subject><subject>Hydrothermal</subject><subject>Ionic liquid</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Li-rich Mn-based</subject><subject>Lithium</subject><subject>Lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Morphology</subject><subject>Rechargeable batteries</subject><subject>Stability analysis</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIFninGA7ceKcEKp4VGrpBc5Waq-poyRu7QSpX8adL8OlvXPZWe3OzGoHoVtKUkpocd-kTd22ynUpIyzOuKBleYYmVJRZkhdFdY4mpGI8EZkQl-gqhIYQQquMTtDn3PVW4dbuRqtxHYINA2i82Wvvhg34rm5x2PexjRvsDCYpX1i27FfZz_df_2YjLPtYVgwb56PXsLFjh63r8boeBvAWwjW6MHUb4OaEU_Tx_PQ-e00Wq5f57HGRKMbZkKwroWrQLIc8LxUTrNJmbSjVNaG5Kqqc5JpSYzgtFKhMac4NVCUDXpQkA55N0d3Rd-vdboQwyMaNvo8nJeMkFzQjjEUWP7KUdyF4MHLrbVf7vaREHjKVjTxlKg-ZymOmUfdw1EF84cuCl0FZ6BVo60ENUjv7j8Mvd5KB5Q</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Xiang, Yanhong</creator><creator>Huang, Meiyun</creator><creator>Jiang, Youliang</creator><creator>Liu, Saiqiu</creator><creator>Li, Jian</creator><creator>Wu, Jianhua</creator><creator>Liu, Zhixiong</creator><creator>Zhu, Ling</creator><creator>Wu, Xianwen</creator><creator>He, Zeqiang</creator><creator>Xiong, Lizhi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210525</creationdate><title>Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries</title><author>Xiang, Yanhong ; Huang, Meiyun ; Jiang, Youliang ; Liu, Saiqiu ; Li, Jian ; Wu, Jianhua ; Liu, Zhixiong ; Zhu, Ling ; Wu, Xianwen ; He, Zeqiang ; Xiong, Lizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-b98caed24e447c2829dfbf11da014c69404d11ff516cec3cd55fe972e56703e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cathode Materials</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Electrode materials</topic><topic>Hydrothermal</topic><topic>Ionic liquid</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Li-rich Mn-based</topic><topic>Lithium</topic><topic>Lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Morphology</topic><topic>Rechargeable batteries</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yanhong</creatorcontrib><creatorcontrib>Huang, Meiyun</creatorcontrib><creatorcontrib>Jiang, Youliang</creatorcontrib><creatorcontrib>Liu, Saiqiu</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Wu, Jianhua</creatorcontrib><creatorcontrib>Liu, Zhixiong</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Wu, Xianwen</creatorcontrib><creatorcontrib>He, Zeqiang</creatorcontrib><creatorcontrib>Xiong, Lizhi</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yanhong</au><au>Huang, Meiyun</au><au>Jiang, Youliang</au><au>Liu, Saiqiu</au><au>Li, Jian</au><au>Wu, Jianhua</au><au>Liu, Zhixiong</au><au>Zhu, Ling</au><au>Wu, Xianwen</au><au>He, Zeqiang</au><au>Xiong, Lizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-05-25</date><risdate>2021</risdate><volume>864</volume><spage>158177</spage><pages>158177-</pages><artnum>158177</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials are characterized by XRD, SEM, TEM and electrochemical measurements. Compared with the original sample, the unique micro-morphology and better layered structure and less cation mixing of the obtained compounds with [BMIm]Cl ionic liquid give the material a sufficient contact between the solid/liquid interface (electrode and electrolyte) and facilitated the process of Li+ intercalation/deintercalation, which availing to improved electrochemical kinetics properties with excellent rate capability and remarkable cycling stability. The analysis of the kinetics of electrode reaction (EIS) proved that the charge transfer resistance value can be decreased by adding appropriate amount of [BMIm]Cl ionic liquid, and thus reduce the diffusion pathways of Li+ ions and electrons, which is well consistent with the rate capability test results. Specifically, when the amount of the [BMIm]Cl ionic liquid reaches 0.5 g, the 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 exhibited a higher initial capacity of 269.7 mAh g−1, and the capacity retention after 65 cycles was 93.0%. •0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 were fabricated via a hydrothermal strategy with assistant of [BMIm]Cl ionic liquid.•[BMIm]Cl ionic liquid shows significant effect on the morphology and structure.•The obtained compounds exhibited an excellent cycling and rate capability.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.158177</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-05, Vol.864, p.158177, Article 158177
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2504813022
source ScienceDirect Journals (5 years ago - present)
subjects Cathode Materials
Cathodes
Charge transfer
Electrode materials
Hydrothermal
Ionic liquid
Ionic liquids
Ions
Kinetics
Li-rich Mn-based
Lithium
Lithium ion battery
Lithium-ion batteries
Manganese
Morphology
Rechargeable batteries
Stability analysis
title Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20liquid%20assisted%20hydrothermal%20synthesis%20of%200.5Li2MnO3%C2%B70.5LiNi0.5Mn0.5O2%20for%20lithium%20ion%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Xiang,%20Yanhong&rft.date=2021-05-25&rft.volume=864&rft.spage=158177&rft.pages=158177-&rft.artnum=158177&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.158177&rft_dat=%3Cproquest_cross%3E2504813022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504813022&rft_id=info:pmid/&rft_els_id=S0925838820345400&rfr_iscdi=true