Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries
The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials ar...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2021-05, Vol.864, p.158177, Article 158177 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 158177 |
container_title | Journal of alloys and compounds |
container_volume | 864 |
creator | Xiang, Yanhong Huang, Meiyun Jiang, Youliang Liu, Saiqiu Li, Jian Wu, Jianhua Liu, Zhixiong Zhu, Ling Wu, Xianwen He, Zeqiang Xiong, Lizhi |
description | The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials are characterized by XRD, SEM, TEM and electrochemical measurements. Compared with the original sample, the unique micro-morphology and better layered structure and less cation mixing of the obtained compounds with [BMIm]Cl ionic liquid give the material a sufficient contact between the solid/liquid interface (electrode and electrolyte) and facilitated the process of Li+ intercalation/deintercalation, which availing to improved electrochemical kinetics properties with excellent rate capability and remarkable cycling stability. The analysis of the kinetics of electrode reaction (EIS) proved that the charge transfer resistance value can be decreased by adding appropriate amount of [BMIm]Cl ionic liquid, and thus reduce the diffusion pathways of Li+ ions and electrons, which is well consistent with the rate capability test results. Specifically, when the amount of the [BMIm]Cl ionic liquid reaches 0.5 g, the 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 exhibited a higher initial capacity of 269.7 mAh g−1, and the capacity retention after 65 cycles was 93.0%.
•0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 were fabricated via a hydrothermal strategy with assistant of [BMIm]Cl ionic liquid.•[BMIm]Cl ionic liquid shows significant effect on the morphology and structure.•The obtained compounds exhibited an excellent cycling and rate capability. |
doi_str_mv | 10.1016/j.jallcom.2020.158177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504813022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820345400</els_id><sourcerecordid>2504813022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-b98caed24e447c2829dfbf11da014c69404d11ff516cec3cd55fe972e56703e53</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIFninGA7ceKcEKp4VGrpBc5Waq-poyRu7QSpX8adL8OlvXPZWe3OzGoHoVtKUkpocd-kTd22ynUpIyzOuKBleYYmVJRZkhdFdY4mpGI8EZkQl-gqhIYQQquMTtDn3PVW4dbuRqtxHYINA2i82Wvvhg34rm5x2PexjRvsDCYpX1i27FfZz_df_2YjLPtYVgwb56PXsLFjh63r8boeBvAWwjW6MHUb4OaEU_Tx_PQ-e00Wq5f57HGRKMbZkKwroWrQLIc8LxUTrNJmbSjVNaG5Kqqc5JpSYzgtFKhMac4NVCUDXpQkA55N0d3Rd-vdboQwyMaNvo8nJeMkFzQjjEUWP7KUdyF4MHLrbVf7vaREHjKVjTxlKg-ZymOmUfdw1EF84cuCl0FZ6BVo60ENUjv7j8Mvd5KB5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504813022</pqid></control><display><type>article</type><title>Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xiang, Yanhong ; Huang, Meiyun ; Jiang, Youliang ; Liu, Saiqiu ; Li, Jian ; Wu, Jianhua ; Liu, Zhixiong ; Zhu, Ling ; Wu, Xianwen ; He, Zeqiang ; Xiong, Lizhi</creator><creatorcontrib>Xiang, Yanhong ; Huang, Meiyun ; Jiang, Youliang ; Liu, Saiqiu ; Li, Jian ; Wu, Jianhua ; Liu, Zhixiong ; Zhu, Ling ; Wu, Xianwen ; He, Zeqiang ; Xiong, Lizhi</creatorcontrib><description>The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials are characterized by XRD, SEM, TEM and electrochemical measurements. Compared with the original sample, the unique micro-morphology and better layered structure and less cation mixing of the obtained compounds with [BMIm]Cl ionic liquid give the material a sufficient contact between the solid/liquid interface (electrode and electrolyte) and facilitated the process of Li+ intercalation/deintercalation, which availing to improved electrochemical kinetics properties with excellent rate capability and remarkable cycling stability. The analysis of the kinetics of electrode reaction (EIS) proved that the charge transfer resistance value can be decreased by adding appropriate amount of [BMIm]Cl ionic liquid, and thus reduce the diffusion pathways of Li+ ions and electrons, which is well consistent with the rate capability test results. Specifically, when the amount of the [BMIm]Cl ionic liquid reaches 0.5 g, the 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 exhibited a higher initial capacity of 269.7 mAh g−1, and the capacity retention after 65 cycles was 93.0%.
•0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 were fabricated via a hydrothermal strategy with assistant of [BMIm]Cl ionic liquid.•[BMIm]Cl ionic liquid shows significant effect on the morphology and structure.•The obtained compounds exhibited an excellent cycling and rate capability.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.158177</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cathode Materials ; Cathodes ; Charge transfer ; Electrode materials ; Hydrothermal ; Ionic liquid ; Ionic liquids ; Ions ; Kinetics ; Li-rich Mn-based ; Lithium ; Lithium ion battery ; Lithium-ion batteries ; Manganese ; Morphology ; Rechargeable batteries ; Stability analysis</subject><ispartof>Journal of alloys and compounds, 2021-05, Vol.864, p.158177, Article 158177</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 25, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-b98caed24e447c2829dfbf11da014c69404d11ff516cec3cd55fe972e56703e53</citedby><cites>FETCH-LOGICAL-c252t-b98caed24e447c2829dfbf11da014c69404d11ff516cec3cd55fe972e56703e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.158177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xiang, Yanhong</creatorcontrib><creatorcontrib>Huang, Meiyun</creatorcontrib><creatorcontrib>Jiang, Youliang</creatorcontrib><creatorcontrib>Liu, Saiqiu</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Wu, Jianhua</creatorcontrib><creatorcontrib>Liu, Zhixiong</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Wu, Xianwen</creatorcontrib><creatorcontrib>He, Zeqiang</creatorcontrib><creatorcontrib>Xiong, Lizhi</creatorcontrib><title>Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries</title><title>Journal of alloys and compounds</title><description>The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials are characterized by XRD, SEM, TEM and electrochemical measurements. Compared with the original sample, the unique micro-morphology and better layered structure and less cation mixing of the obtained compounds with [BMIm]Cl ionic liquid give the material a sufficient contact between the solid/liquid interface (electrode and electrolyte) and facilitated the process of Li+ intercalation/deintercalation, which availing to improved electrochemical kinetics properties with excellent rate capability and remarkable cycling stability. The analysis of the kinetics of electrode reaction (EIS) proved that the charge transfer resistance value can be decreased by adding appropriate amount of [BMIm]Cl ionic liquid, and thus reduce the diffusion pathways of Li+ ions and electrons, which is well consistent with the rate capability test results. Specifically, when the amount of the [BMIm]Cl ionic liquid reaches 0.5 g, the 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 exhibited a higher initial capacity of 269.7 mAh g−1, and the capacity retention after 65 cycles was 93.0%.
•0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 were fabricated via a hydrothermal strategy with assistant of [BMIm]Cl ionic liquid.•[BMIm]Cl ionic liquid shows significant effect on the morphology and structure.•The obtained compounds exhibited an excellent cycling and rate capability.</description><subject>Cathode Materials</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Electrode materials</subject><subject>Hydrothermal</subject><subject>Ionic liquid</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Li-rich Mn-based</subject><subject>Lithium</subject><subject>Lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Morphology</subject><subject>Rechargeable batteries</subject><subject>Stability analysis</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIFninGA7ceKcEKp4VGrpBc5Waq-poyRu7QSpX8adL8OlvXPZWe3OzGoHoVtKUkpocd-kTd22ynUpIyzOuKBleYYmVJRZkhdFdY4mpGI8EZkQl-gqhIYQQquMTtDn3PVW4dbuRqtxHYINA2i82Wvvhg34rm5x2PexjRvsDCYpX1i27FfZz_df_2YjLPtYVgwb56PXsLFjh63r8boeBvAWwjW6MHUb4OaEU_Tx_PQ-e00Wq5f57HGRKMbZkKwroWrQLIc8LxUTrNJmbSjVNaG5Kqqc5JpSYzgtFKhMac4NVCUDXpQkA55N0d3Rd-vdboQwyMaNvo8nJeMkFzQjjEUWP7KUdyF4MHLrbVf7vaREHjKVjTxlKg-ZymOmUfdw1EF84cuCl0FZ6BVo60ENUjv7j8Mvd5KB5Q</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Xiang, Yanhong</creator><creator>Huang, Meiyun</creator><creator>Jiang, Youliang</creator><creator>Liu, Saiqiu</creator><creator>Li, Jian</creator><creator>Wu, Jianhua</creator><creator>Liu, Zhixiong</creator><creator>Zhu, Ling</creator><creator>Wu, Xianwen</creator><creator>He, Zeqiang</creator><creator>Xiong, Lizhi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210525</creationdate><title>Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries</title><author>Xiang, Yanhong ; Huang, Meiyun ; Jiang, Youliang ; Liu, Saiqiu ; Li, Jian ; Wu, Jianhua ; Liu, Zhixiong ; Zhu, Ling ; Wu, Xianwen ; He, Zeqiang ; Xiong, Lizhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-b98caed24e447c2829dfbf11da014c69404d11ff516cec3cd55fe972e56703e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cathode Materials</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Electrode materials</topic><topic>Hydrothermal</topic><topic>Ionic liquid</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Li-rich Mn-based</topic><topic>Lithium</topic><topic>Lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Morphology</topic><topic>Rechargeable batteries</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yanhong</creatorcontrib><creatorcontrib>Huang, Meiyun</creatorcontrib><creatorcontrib>Jiang, Youliang</creatorcontrib><creatorcontrib>Liu, Saiqiu</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Wu, Jianhua</creatorcontrib><creatorcontrib>Liu, Zhixiong</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Wu, Xianwen</creatorcontrib><creatorcontrib>He, Zeqiang</creatorcontrib><creatorcontrib>Xiong, Lizhi</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yanhong</au><au>Huang, Meiyun</au><au>Jiang, Youliang</au><au>Liu, Saiqiu</au><au>Li, Jian</au><au>Wu, Jianhua</au><au>Liu, Zhixiong</au><au>Zhu, Ling</au><au>Wu, Xianwen</au><au>He, Zeqiang</au><au>Xiong, Lizhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-05-25</date><risdate>2021</risdate><volume>864</volume><spage>158177</spage><pages>158177-</pages><artnum>158177</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The uniform lithium-rich manganese-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 cathode materials are synthesized by a hydrothermal strategy with assistant of 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) ionic liquid. The microstructures and electrochemical performances of the prepared cathode materials are characterized by XRD, SEM, TEM and electrochemical measurements. Compared with the original sample, the unique micro-morphology and better layered structure and less cation mixing of the obtained compounds with [BMIm]Cl ionic liquid give the material a sufficient contact between the solid/liquid interface (electrode and electrolyte) and facilitated the process of Li+ intercalation/deintercalation, which availing to improved electrochemical kinetics properties with excellent rate capability and remarkable cycling stability. The analysis of the kinetics of electrode reaction (EIS) proved that the charge transfer resistance value can be decreased by adding appropriate amount of [BMIm]Cl ionic liquid, and thus reduce the diffusion pathways of Li+ ions and electrons, which is well consistent with the rate capability test results. Specifically, when the amount of the [BMIm]Cl ionic liquid reaches 0.5 g, the 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 exhibited a higher initial capacity of 269.7 mAh g−1, and the capacity retention after 65 cycles was 93.0%.
•0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 were fabricated via a hydrothermal strategy with assistant of [BMIm]Cl ionic liquid.•[BMIm]Cl ionic liquid shows significant effect on the morphology and structure.•The obtained compounds exhibited an excellent cycling and rate capability.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.158177</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2021-05, Vol.864, p.158177, Article 158177 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2504813022 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Cathode Materials Cathodes Charge transfer Electrode materials Hydrothermal Ionic liquid Ionic liquids Ions Kinetics Li-rich Mn-based Lithium Lithium ion battery Lithium-ion batteries Manganese Morphology Rechargeable batteries Stability analysis |
title | Ionic liquid assisted hydrothermal synthesis of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 for lithium ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20liquid%20assisted%20hydrothermal%20synthesis%20of%200.5Li2MnO3%C2%B70.5LiNi0.5Mn0.5O2%20for%20lithium%20ion%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Xiang,%20Yanhong&rft.date=2021-05-25&rft.volume=864&rft.spage=158177&rft.pages=158177-&rft.artnum=158177&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.158177&rft_dat=%3Cproquest_cross%3E2504813022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504813022&rft_id=info:pmid/&rft_els_id=S0925838820345400&rfr_iscdi=true |