Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)
[Display omitted] •Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells. This study explored a bioenergy platfor...
Gespeichert in:
Veröffentlicht in: | Process biochemistry (1991) 2021-03, Vol.102, p.59-71 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | |
container_start_page | 59 |
container_title | Process biochemistry (1991) |
container_volume | 102 |
creator | Tacas, Arjay Christopher J. Tsai, Po-Wei Tayo, Lemmuel L. Hsueh, Chung-Chuan Sun, Shu-Yun Chen, Bor-Yann |
description | [Display omitted]
•Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells.
This study explored a bioenergy platform of biodegradability and toxicity evaluation through microbial fuel cells (MFCs) modules for simultaneous decolorization and bioelectricity generation. The most appropriate decolorizer consortia NIU pond exhibited the extent of decolorization: Sunset Yellow FCF (93 %), Allura Red (96.6 %), and Tartrazine (91.41 %) in 3, 8, 12 h respectively. The ranking for bioelectricity generation in MFCs (unit: mW m−2) (Sunset Yellow FCF Degradation) was hot spring water (46.42) > hot spring soil (22.17) > NIU pond (17.75) > NIU soil (7.89). In the presence of the dye, power density was increased by 88 %, 84 % and 27 % for NP, HS, and HW, respectively. Acclimation process was inspected in terms of bioenergy-extracting capability to evaluate toxicity potency of model dyes. According to metagenomics analysis upon microbial populations before and after acclimation, indigenous microbial community was only predominated by Pseudomonas monteilii and of Bacillus pumilus. Significant increased biodiversity was evolved under selection of dye stress. After acclimation, community ecology in the consortia contained Klebsiella, Citrobacter, Enterococcus faecalis, Lactobacillus lactis, and Escherichia shigella. Tandem mass spectrometric analysis pointed out sunset yellow ECF was gradually degraded and decolorized intermediates steadily accumulated. MFC modules were promising platforms to select candidate biodecolorizers from microbial populations. |
doi_str_mv | 10.1016/j.procbio.2020.12.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504813015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359511320317505</els_id><sourcerecordid>2504813015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-1bf27a9edc442366561d99afc445cc540bf46adfaf0919023a790acc08a478923</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUiW2MAiwY84iVcIFQpIRWxgbTl-FFdpXGwHUb4eV-2e1Tx0587MAeASoxIjXN-uyk3wqnO-JIjkHikRokdggtuGFpTw9jjnlPGCYUxPwVmMqyzAGKMJ-HwwyyC1TM4PUA4aZpvkf5xyaQu9hfLXQ701EY7RDUvoBu2WZvBjhJ1UyQQnC6lU79YyGQ3XTgXfOdlDO5oeKtP3EV6_zmfx5hycWNlHc3GIU_Axf3yfPReLt6eX2f2iUBWiqcCdJY3kRquqIrSuWY0159LmkinFKtTZqpbaSos45ohQ2XCUL0CtrJqWEzoFV3vfzORrNDGJlR_DkFcKwlDVYoowyyq2V-V7YwzGik3IP4StwEjsoIqVOEAVO6gCE5GZ5bm7_ZzJL3w7E0RUzgzKaBeMSkJ794_DHzPmg08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504813015</pqid></control><display><type>article</type><title>Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)</title><source>Elsevier ScienceDirect Journals</source><creator>Tacas, Arjay Christopher J. ; Tsai, Po-Wei ; Tayo, Lemmuel L. ; Hsueh, Chung-Chuan ; Sun, Shu-Yun ; Chen, Bor-Yann</creator><creatorcontrib>Tacas, Arjay Christopher J. ; Tsai, Po-Wei ; Tayo, Lemmuel L. ; Hsueh, Chung-Chuan ; Sun, Shu-Yun ; Chen, Bor-Yann</creatorcontrib><description>[Display omitted]
•Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells.
This study explored a bioenergy platform of biodegradability and toxicity evaluation through microbial fuel cells (MFCs) modules for simultaneous decolorization and bioelectricity generation. The most appropriate decolorizer consortia NIU pond exhibited the extent of decolorization: Sunset Yellow FCF (93 %), Allura Red (96.6 %), and Tartrazine (91.41 %) in 3, 8, 12 h respectively. The ranking for bioelectricity generation in MFCs (unit: mW m−2) (Sunset Yellow FCF Degradation) was hot spring water (46.42) > hot spring soil (22.17) > NIU pond (17.75) > NIU soil (7.89). In the presence of the dye, power density was increased by 88 %, 84 % and 27 % for NP, HS, and HW, respectively. Acclimation process was inspected in terms of bioenergy-extracting capability to evaluate toxicity potency of model dyes. According to metagenomics analysis upon microbial populations before and after acclimation, indigenous microbial community was only predominated by Pseudomonas monteilii and of Bacillus pumilus. Significant increased biodiversity was evolved under selection of dye stress. After acclimation, community ecology in the consortia contained Klebsiella, Citrobacter, Enterococcus faecalis, Lactobacillus lactis, and Escherichia shigella. Tandem mass spectrometric analysis pointed out sunset yellow ECF was gradually degraded and decolorized intermediates steadily accumulated. MFC modules were promising platforms to select candidate biodecolorizers from microbial populations.</description><identifier>ISSN: 1359-5113</identifier><identifier>EISSN: 1873-3298</identifier><identifier>DOI: 10.1016/j.procbio.2020.12.003</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Acclimation ; Acclimatization ; Azo dyes ; Biochemical fuel cells ; Biodegradability ; Biodegradation ; Biodiversity ; Bioelectricity ; Bioenergy recovery ; Citrobacter ; Community ecology analysis ; Consortia ; Decoloring ; Decolorization ; Degradation ; Dye decolorization ; Dyes ; Fuel cells ; Fuel technology ; Hot springs ; Intermediates ; Klebsiella ; Metagenomics ; Microbial fuel cell ; Microorganisms ; Modules ; Ponds ; Populations ; Renewable energy ; Soils ; Species acclimation ; Spectrometry ; Spring water ; Tartrazine ; Toxicity</subject><ispartof>Process biochemistry (1991), 2021-03, Vol.102, p.59-71</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-1bf27a9edc442366561d99afc445cc540bf46adfaf0919023a790acc08a478923</citedby><cites>FETCH-LOGICAL-c403t-1bf27a9edc442366561d99afc445cc540bf46adfaf0919023a790acc08a478923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359511320317505$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Tacas, Arjay Christopher J.</creatorcontrib><creatorcontrib>Tsai, Po-Wei</creatorcontrib><creatorcontrib>Tayo, Lemmuel L.</creatorcontrib><creatorcontrib>Hsueh, Chung-Chuan</creatorcontrib><creatorcontrib>Sun, Shu-Yun</creatorcontrib><creatorcontrib>Chen, Bor-Yann</creatorcontrib><title>Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)</title><title>Process biochemistry (1991)</title><description>[Display omitted]
•Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells.
This study explored a bioenergy platform of biodegradability and toxicity evaluation through microbial fuel cells (MFCs) modules for simultaneous decolorization and bioelectricity generation. The most appropriate decolorizer consortia NIU pond exhibited the extent of decolorization: Sunset Yellow FCF (93 %), Allura Red (96.6 %), and Tartrazine (91.41 %) in 3, 8, 12 h respectively. The ranking for bioelectricity generation in MFCs (unit: mW m−2) (Sunset Yellow FCF Degradation) was hot spring water (46.42) > hot spring soil (22.17) > NIU pond (17.75) > NIU soil (7.89). In the presence of the dye, power density was increased by 88 %, 84 % and 27 % for NP, HS, and HW, respectively. Acclimation process was inspected in terms of bioenergy-extracting capability to evaluate toxicity potency of model dyes. According to metagenomics analysis upon microbial populations before and after acclimation, indigenous microbial community was only predominated by Pseudomonas monteilii and of Bacillus pumilus. Significant increased biodiversity was evolved under selection of dye stress. After acclimation, community ecology in the consortia contained Klebsiella, Citrobacter, Enterococcus faecalis, Lactobacillus lactis, and Escherichia shigella. Tandem mass spectrometric analysis pointed out sunset yellow ECF was gradually degraded and decolorized intermediates steadily accumulated. MFC modules were promising platforms to select candidate biodecolorizers from microbial populations.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Azo dyes</subject><subject>Biochemical fuel cells</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biodiversity</subject><subject>Bioelectricity</subject><subject>Bioenergy recovery</subject><subject>Citrobacter</subject><subject>Community ecology analysis</subject><subject>Consortia</subject><subject>Decoloring</subject><subject>Decolorization</subject><subject>Degradation</subject><subject>Dye decolorization</subject><subject>Dyes</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Hot springs</subject><subject>Intermediates</subject><subject>Klebsiella</subject><subject>Metagenomics</subject><subject>Microbial fuel cell</subject><subject>Microorganisms</subject><subject>Modules</subject><subject>Ponds</subject><subject>Populations</subject><subject>Renewable energy</subject><subject>Soils</subject><subject>Species acclimation</subject><subject>Spectrometry</subject><subject>Spring water</subject><subject>Tartrazine</subject><subject>Toxicity</subject><issn>1359-5113</issn><issn>1873-3298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUiW2MAiwY84iVcIFQpIRWxgbTl-FFdpXGwHUb4eV-2e1Tx0587MAeASoxIjXN-uyk3wqnO-JIjkHikRokdggtuGFpTw9jjnlPGCYUxPwVmMqyzAGKMJ-HwwyyC1TM4PUA4aZpvkf5xyaQu9hfLXQ701EY7RDUvoBu2WZvBjhJ1UyQQnC6lU79YyGQ3XTgXfOdlDO5oeKtP3EV6_zmfx5hycWNlHc3GIU_Axf3yfPReLt6eX2f2iUBWiqcCdJY3kRquqIrSuWY0159LmkinFKtTZqpbaSos45ohQ2XCUL0CtrJqWEzoFV3vfzORrNDGJlR_DkFcKwlDVYoowyyq2V-V7YwzGik3IP4StwEjsoIqVOEAVO6gCE5GZ5bm7_ZzJL3w7E0RUzgzKaBeMSkJ794_DHzPmg08</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Tacas, Arjay Christopher J.</creator><creator>Tsai, Po-Wei</creator><creator>Tayo, Lemmuel L.</creator><creator>Hsueh, Chung-Chuan</creator><creator>Sun, Shu-Yun</creator><creator>Chen, Bor-Yann</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>202103</creationdate><title>Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)</title><author>Tacas, Arjay Christopher J. ; Tsai, Po-Wei ; Tayo, Lemmuel L. ; Hsueh, Chung-Chuan ; Sun, Shu-Yun ; Chen, Bor-Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-1bf27a9edc442366561d99afc445cc540bf46adfaf0919023a790acc08a478923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Azo dyes</topic><topic>Biochemical fuel cells</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biodiversity</topic><topic>Bioelectricity</topic><topic>Bioenergy recovery</topic><topic>Citrobacter</topic><topic>Community ecology analysis</topic><topic>Consortia</topic><topic>Decoloring</topic><topic>Decolorization</topic><topic>Degradation</topic><topic>Dye decolorization</topic><topic>Dyes</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Hot springs</topic><topic>Intermediates</topic><topic>Klebsiella</topic><topic>Metagenomics</topic><topic>Microbial fuel cell</topic><topic>Microorganisms</topic><topic>Modules</topic><topic>Ponds</topic><topic>Populations</topic><topic>Renewable energy</topic><topic>Soils</topic><topic>Species acclimation</topic><topic>Spectrometry</topic><topic>Spring water</topic><topic>Tartrazine</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tacas, Arjay Christopher J.</creatorcontrib><creatorcontrib>Tsai, Po-Wei</creatorcontrib><creatorcontrib>Tayo, Lemmuel L.</creatorcontrib><creatorcontrib>Hsueh, Chung-Chuan</creatorcontrib><creatorcontrib>Sun, Shu-Yun</creatorcontrib><creatorcontrib>Chen, Bor-Yann</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Process biochemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tacas, Arjay Christopher J.</au><au>Tsai, Po-Wei</au><au>Tayo, Lemmuel L.</au><au>Hsueh, Chung-Chuan</au><au>Sun, Shu-Yun</au><au>Chen, Bor-Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)</atitle><jtitle>Process biochemistry (1991)</jtitle><date>2021-03</date><risdate>2021</risdate><volume>102</volume><spage>59</spage><epage>71</epage><pages>59-71</pages><issn>1359-5113</issn><eissn>1873-3298</eissn><abstract>[Display omitted]
•Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells.
This study explored a bioenergy platform of biodegradability and toxicity evaluation through microbial fuel cells (MFCs) modules for simultaneous decolorization and bioelectricity generation. The most appropriate decolorizer consortia NIU pond exhibited the extent of decolorization: Sunset Yellow FCF (93 %), Allura Red (96.6 %), and Tartrazine (91.41 %) in 3, 8, 12 h respectively. The ranking for bioelectricity generation in MFCs (unit: mW m−2) (Sunset Yellow FCF Degradation) was hot spring water (46.42) > hot spring soil (22.17) > NIU pond (17.75) > NIU soil (7.89). In the presence of the dye, power density was increased by 88 %, 84 % and 27 % for NP, HS, and HW, respectively. Acclimation process was inspected in terms of bioenergy-extracting capability to evaluate toxicity potency of model dyes. According to metagenomics analysis upon microbial populations before and after acclimation, indigenous microbial community was only predominated by Pseudomonas monteilii and of Bacillus pumilus. Significant increased biodiversity was evolved under selection of dye stress. After acclimation, community ecology in the consortia contained Klebsiella, Citrobacter, Enterococcus faecalis, Lactobacillus lactis, and Escherichia shigella. Tandem mass spectrometric analysis pointed out sunset yellow ECF was gradually degraded and decolorized intermediates steadily accumulated. MFC modules were promising platforms to select candidate biodecolorizers from microbial populations.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.procbio.2020.12.003</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-5113 |
ispartof | Process biochemistry (1991), 2021-03, Vol.102, p.59-71 |
issn | 1359-5113 1873-3298 |
language | eng |
recordid | cdi_proquest_journals_2504813015 |
source | Elsevier ScienceDirect Journals |
subjects | Acclimation Acclimatization Azo dyes Biochemical fuel cells Biodegradability Biodegradation Biodiversity Bioelectricity Bioenergy recovery Citrobacter Community ecology analysis Consortia Decoloring Decolorization Degradation Dye decolorization Dyes Fuel cells Fuel technology Hot springs Intermediates Klebsiella Metagenomics Microbial fuel cell Microorganisms Modules Ponds Populations Renewable energy Soils Species acclimation Spectrometry Spring water Tartrazine Toxicity |
title | Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20and%20biotoxicity%20of%20azo%20dyes%20using%20indigenous%20bacteria-acclimated%20microbial%20fuel%20cells%20(MFCs)&rft.jtitle=Process%20biochemistry%20(1991)&rft.au=Tacas,%20Arjay%20Christopher%20J.&rft.date=2021-03&rft.volume=102&rft.spage=59&rft.epage=71&rft.pages=59-71&rft.issn=1359-5113&rft.eissn=1873-3298&rft_id=info:doi/10.1016/j.procbio.2020.12.003&rft_dat=%3Cproquest_cross%3E2504813015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504813015&rft_id=info:pmid/&rft_els_id=S1359511320317505&rfr_iscdi=true |