Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)

[Display omitted] •Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells. This study explored a bioenergy platfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Process biochemistry (1991) 2021-03, Vol.102, p.59-71
Hauptverfasser: Tacas, Arjay Christopher J., Tsai, Po-Wei, Tayo, Lemmuel L., Hsueh, Chung-Chuan, Sun, Shu-Yun, Chen, Bor-Yann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue
container_start_page 59
container_title Process biochemistry (1991)
container_volume 102
creator Tacas, Arjay Christopher J.
Tsai, Po-Wei
Tayo, Lemmuel L.
Hsueh, Chung-Chuan
Sun, Shu-Yun
Chen, Bor-Yann
description [Display omitted] •Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells. This study explored a bioenergy platform of biodegradability and toxicity evaluation through microbial fuel cells (MFCs) modules for simultaneous decolorization and bioelectricity generation. The most appropriate decolorizer consortia NIU pond exhibited the extent of decolorization: Sunset Yellow FCF (93 %), Allura Red (96.6 %), and Tartrazine (91.41 %) in 3, 8, 12 h respectively. The ranking for bioelectricity generation in MFCs (unit: mW m−2) (Sunset Yellow FCF Degradation) was hot spring water (46.42) > hot spring soil (22.17) > NIU pond (17.75) > NIU soil (7.89). In the presence of the dye, power density was increased by 88 %, 84 % and 27 % for NP, HS, and HW, respectively. Acclimation process was inspected in terms of bioenergy-extracting capability to evaluate toxicity potency of model dyes. According to metagenomics analysis upon microbial populations before and after acclimation, indigenous microbial community was only predominated by Pseudomonas monteilii and of Bacillus pumilus. Significant increased biodiversity was evolved under selection of dye stress. After acclimation, community ecology in the consortia contained Klebsiella, Citrobacter, Enterococcus faecalis, Lactobacillus lactis, and Escherichia shigella. Tandem mass spectrometric analysis pointed out sunset yellow ECF was gradually degraded and decolorized intermediates steadily accumulated. MFC modules were promising platforms to select candidate biodecolorizers from microbial populations.
doi_str_mv 10.1016/j.procbio.2020.12.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504813015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359511320317505</els_id><sourcerecordid>2504813015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-1bf27a9edc442366561d99afc445cc540bf46adfaf0919023a790acc08a478923</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUiW2MAiwY84iVcIFQpIRWxgbTl-FFdpXGwHUb4eV-2e1Tx0587MAeASoxIjXN-uyk3wqnO-JIjkHikRokdggtuGFpTw9jjnlPGCYUxPwVmMqyzAGKMJ-HwwyyC1TM4PUA4aZpvkf5xyaQu9hfLXQ701EY7RDUvoBu2WZvBjhJ1UyQQnC6lU79YyGQ3XTgXfOdlDO5oeKtP3EV6_zmfx5hycWNlHc3GIU_Axf3yfPReLt6eX2f2iUBWiqcCdJY3kRquqIrSuWY0159LmkinFKtTZqpbaSos45ohQ2XCUL0CtrJqWEzoFV3vfzORrNDGJlR_DkFcKwlDVYoowyyq2V-V7YwzGik3IP4StwEjsoIqVOEAVO6gCE5GZ5bm7_ZzJL3w7E0RUzgzKaBeMSkJ794_DHzPmg08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504813015</pqid></control><display><type>article</type><title>Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)</title><source>Elsevier ScienceDirect Journals</source><creator>Tacas, Arjay Christopher J. ; Tsai, Po-Wei ; Tayo, Lemmuel L. ; Hsueh, Chung-Chuan ; Sun, Shu-Yun ; Chen, Bor-Yann</creator><creatorcontrib>Tacas, Arjay Christopher J. ; Tsai, Po-Wei ; Tayo, Lemmuel L. ; Hsueh, Chung-Chuan ; Sun, Shu-Yun ; Chen, Bor-Yann</creatorcontrib><description>[Display omitted] •Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells. This study explored a bioenergy platform of biodegradability and toxicity evaluation through microbial fuel cells (MFCs) modules for simultaneous decolorization and bioelectricity generation. The most appropriate decolorizer consortia NIU pond exhibited the extent of decolorization: Sunset Yellow FCF (93 %), Allura Red (96.6 %), and Tartrazine (91.41 %) in 3, 8, 12 h respectively. The ranking for bioelectricity generation in MFCs (unit: mW m−2) (Sunset Yellow FCF Degradation) was hot spring water (46.42) &gt; hot spring soil (22.17) &gt; NIU pond (17.75) &gt; NIU soil (7.89). In the presence of the dye, power density was increased by 88 %, 84 % and 27 % for NP, HS, and HW, respectively. Acclimation process was inspected in terms of bioenergy-extracting capability to evaluate toxicity potency of model dyes. According to metagenomics analysis upon microbial populations before and after acclimation, indigenous microbial community was only predominated by Pseudomonas monteilii and of Bacillus pumilus. Significant increased biodiversity was evolved under selection of dye stress. After acclimation, community ecology in the consortia contained Klebsiella, Citrobacter, Enterococcus faecalis, Lactobacillus lactis, and Escherichia shigella. Tandem mass spectrometric analysis pointed out sunset yellow ECF was gradually degraded and decolorized intermediates steadily accumulated. MFC modules were promising platforms to select candidate biodecolorizers from microbial populations.</description><identifier>ISSN: 1359-5113</identifier><identifier>EISSN: 1873-3298</identifier><identifier>DOI: 10.1016/j.procbio.2020.12.003</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Acclimation ; Acclimatization ; Azo dyes ; Biochemical fuel cells ; Biodegradability ; Biodegradation ; Biodiversity ; Bioelectricity ; Bioenergy recovery ; Citrobacter ; Community ecology analysis ; Consortia ; Decoloring ; Decolorization ; Degradation ; Dye decolorization ; Dyes ; Fuel cells ; Fuel technology ; Hot springs ; Intermediates ; Klebsiella ; Metagenomics ; Microbial fuel cell ; Microorganisms ; Modules ; Ponds ; Populations ; Renewable energy ; Soils ; Species acclimation ; Spectrometry ; Spring water ; Tartrazine ; Toxicity</subject><ispartof>Process biochemistry (1991), 2021-03, Vol.102, p.59-71</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-1bf27a9edc442366561d99afc445cc540bf46adfaf0919023a790acc08a478923</citedby><cites>FETCH-LOGICAL-c403t-1bf27a9edc442366561d99afc445cc540bf46adfaf0919023a790acc08a478923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359511320317505$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Tacas, Arjay Christopher J.</creatorcontrib><creatorcontrib>Tsai, Po-Wei</creatorcontrib><creatorcontrib>Tayo, Lemmuel L.</creatorcontrib><creatorcontrib>Hsueh, Chung-Chuan</creatorcontrib><creatorcontrib>Sun, Shu-Yun</creatorcontrib><creatorcontrib>Chen, Bor-Yann</creatorcontrib><title>Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)</title><title>Process biochemistry (1991)</title><description>[Display omitted] •Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells. This study explored a bioenergy platform of biodegradability and toxicity evaluation through microbial fuel cells (MFCs) modules for simultaneous decolorization and bioelectricity generation. The most appropriate decolorizer consortia NIU pond exhibited the extent of decolorization: Sunset Yellow FCF (93 %), Allura Red (96.6 %), and Tartrazine (91.41 %) in 3, 8, 12 h respectively. The ranking for bioelectricity generation in MFCs (unit: mW m−2) (Sunset Yellow FCF Degradation) was hot spring water (46.42) &gt; hot spring soil (22.17) &gt; NIU pond (17.75) &gt; NIU soil (7.89). In the presence of the dye, power density was increased by 88 %, 84 % and 27 % for NP, HS, and HW, respectively. Acclimation process was inspected in terms of bioenergy-extracting capability to evaluate toxicity potency of model dyes. According to metagenomics analysis upon microbial populations before and after acclimation, indigenous microbial community was only predominated by Pseudomonas monteilii and of Bacillus pumilus. Significant increased biodiversity was evolved under selection of dye stress. After acclimation, community ecology in the consortia contained Klebsiella, Citrobacter, Enterococcus faecalis, Lactobacillus lactis, and Escherichia shigella. Tandem mass spectrometric analysis pointed out sunset yellow ECF was gradually degraded and decolorized intermediates steadily accumulated. MFC modules were promising platforms to select candidate biodecolorizers from microbial populations.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Azo dyes</subject><subject>Biochemical fuel cells</subject><subject>Biodegradability</subject><subject>Biodegradation</subject><subject>Biodiversity</subject><subject>Bioelectricity</subject><subject>Bioenergy recovery</subject><subject>Citrobacter</subject><subject>Community ecology analysis</subject><subject>Consortia</subject><subject>Decoloring</subject><subject>Decolorization</subject><subject>Degradation</subject><subject>Dye decolorization</subject><subject>Dyes</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Hot springs</subject><subject>Intermediates</subject><subject>Klebsiella</subject><subject>Metagenomics</subject><subject>Microbial fuel cell</subject><subject>Microorganisms</subject><subject>Modules</subject><subject>Ponds</subject><subject>Populations</subject><subject>Renewable energy</subject><subject>Soils</subject><subject>Species acclimation</subject><subject>Spectrometry</subject><subject>Spring water</subject><subject>Tartrazine</subject><subject>Toxicity</subject><issn>1359-5113</issn><issn>1873-3298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUiW2MAiwY84iVcIFQpIRWxgbTl-FFdpXGwHUb4eV-2e1Tx0587MAeASoxIjXN-uyk3wqnO-JIjkHikRokdggtuGFpTw9jjnlPGCYUxPwVmMqyzAGKMJ-HwwyyC1TM4PUA4aZpvkf5xyaQu9hfLXQ701EY7RDUvoBu2WZvBjhJ1UyQQnC6lU79YyGQ3XTgXfOdlDO5oeKtP3EV6_zmfx5hycWNlHc3GIU_Axf3yfPReLt6eX2f2iUBWiqcCdJY3kRquqIrSuWY0159LmkinFKtTZqpbaSos45ohQ2XCUL0CtrJqWEzoFV3vfzORrNDGJlR_DkFcKwlDVYoowyyq2V-V7YwzGik3IP4StwEjsoIqVOEAVO6gCE5GZ5bm7_ZzJL3w7E0RUzgzKaBeMSkJ794_DHzPmg08</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Tacas, Arjay Christopher J.</creator><creator>Tsai, Po-Wei</creator><creator>Tayo, Lemmuel L.</creator><creator>Hsueh, Chung-Chuan</creator><creator>Sun, Shu-Yun</creator><creator>Chen, Bor-Yann</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>202103</creationdate><title>Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)</title><author>Tacas, Arjay Christopher J. ; Tsai, Po-Wei ; Tayo, Lemmuel L. ; Hsueh, Chung-Chuan ; Sun, Shu-Yun ; Chen, Bor-Yann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-1bf27a9edc442366561d99afc445cc540bf46adfaf0919023a790acc08a478923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Azo dyes</topic><topic>Biochemical fuel cells</topic><topic>Biodegradability</topic><topic>Biodegradation</topic><topic>Biodiversity</topic><topic>Bioelectricity</topic><topic>Bioenergy recovery</topic><topic>Citrobacter</topic><topic>Community ecology analysis</topic><topic>Consortia</topic><topic>Decoloring</topic><topic>Decolorization</topic><topic>Degradation</topic><topic>Dye decolorization</topic><topic>Dyes</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Hot springs</topic><topic>Intermediates</topic><topic>Klebsiella</topic><topic>Metagenomics</topic><topic>Microbial fuel cell</topic><topic>Microorganisms</topic><topic>Modules</topic><topic>Ponds</topic><topic>Populations</topic><topic>Renewable energy</topic><topic>Soils</topic><topic>Species acclimation</topic><topic>Spectrometry</topic><topic>Spring water</topic><topic>Tartrazine</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tacas, Arjay Christopher J.</creatorcontrib><creatorcontrib>Tsai, Po-Wei</creatorcontrib><creatorcontrib>Tayo, Lemmuel L.</creatorcontrib><creatorcontrib>Hsueh, Chung-Chuan</creatorcontrib><creatorcontrib>Sun, Shu-Yun</creatorcontrib><creatorcontrib>Chen, Bor-Yann</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Process biochemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tacas, Arjay Christopher J.</au><au>Tsai, Po-Wei</au><au>Tayo, Lemmuel L.</au><au>Hsueh, Chung-Chuan</au><au>Sun, Shu-Yun</au><au>Chen, Bor-Yann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)</atitle><jtitle>Process biochemistry (1991)</jtitle><date>2021-03</date><risdate>2021</risdate><volume>102</volume><spage>59</spage><epage>71</epage><pages>59-71</pages><issn>1359-5113</issn><eissn>1873-3298</eissn><abstract>[Display omitted] •Disclose factors that influence the predominance of dye-decolorizing species.•Unveil the limiting criteria to distinguish dye biodegradation and biosorption.•Exhibit power-stimulating characteristics of the consortia in microbial fuel cells. This study explored a bioenergy platform of biodegradability and toxicity evaluation through microbial fuel cells (MFCs) modules for simultaneous decolorization and bioelectricity generation. The most appropriate decolorizer consortia NIU pond exhibited the extent of decolorization: Sunset Yellow FCF (93 %), Allura Red (96.6 %), and Tartrazine (91.41 %) in 3, 8, 12 h respectively. The ranking for bioelectricity generation in MFCs (unit: mW m−2) (Sunset Yellow FCF Degradation) was hot spring water (46.42) &gt; hot spring soil (22.17) &gt; NIU pond (17.75) &gt; NIU soil (7.89). In the presence of the dye, power density was increased by 88 %, 84 % and 27 % for NP, HS, and HW, respectively. Acclimation process was inspected in terms of bioenergy-extracting capability to evaluate toxicity potency of model dyes. According to metagenomics analysis upon microbial populations before and after acclimation, indigenous microbial community was only predominated by Pseudomonas monteilii and of Bacillus pumilus. Significant increased biodiversity was evolved under selection of dye stress. After acclimation, community ecology in the consortia contained Klebsiella, Citrobacter, Enterococcus faecalis, Lactobacillus lactis, and Escherichia shigella. Tandem mass spectrometric analysis pointed out sunset yellow ECF was gradually degraded and decolorized intermediates steadily accumulated. MFC modules were promising platforms to select candidate biodecolorizers from microbial populations.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.procbio.2020.12.003</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-5113
ispartof Process biochemistry (1991), 2021-03, Vol.102, p.59-71
issn 1359-5113
1873-3298
language eng
recordid cdi_proquest_journals_2504813015
source Elsevier ScienceDirect Journals
subjects Acclimation
Acclimatization
Azo dyes
Biochemical fuel cells
Biodegradability
Biodegradation
Biodiversity
Bioelectricity
Bioenergy recovery
Citrobacter
Community ecology analysis
Consortia
Decoloring
Decolorization
Degradation
Dye decolorization
Dyes
Fuel cells
Fuel technology
Hot springs
Intermediates
Klebsiella
Metagenomics
Microbial fuel cell
Microorganisms
Modules
Ponds
Populations
Renewable energy
Soils
Species acclimation
Spectrometry
Spring water
Tartrazine
Toxicity
title Degradation and biotoxicity of azo dyes using indigenous bacteria-acclimated microbial fuel cells (MFCs)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A53%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20and%20biotoxicity%20of%20azo%20dyes%20using%20indigenous%20bacteria-acclimated%20microbial%20fuel%20cells%20(MFCs)&rft.jtitle=Process%20biochemistry%20(1991)&rft.au=Tacas,%20Arjay%20Christopher%20J.&rft.date=2021-03&rft.volume=102&rft.spage=59&rft.epage=71&rft.pages=59-71&rft.issn=1359-5113&rft.eissn=1873-3298&rft_id=info:doi/10.1016/j.procbio.2020.12.003&rft_dat=%3Cproquest_cross%3E2504813015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504813015&rft_id=info:pmid/&rft_els_id=S1359511320317505&rfr_iscdi=true