Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance

[Display omitted] •Antimony doping stabilizes cubic perovskite structure of SrCoO3-δ.•Remarkable oxygen reduction reaction activity is achieved.•The charge-transfer is confirmed as the rate-determining step.•Antimony doping enables perfect performance recovering from CO2 erosion.•The CO2 tolerance m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2021-06, Vol.286, p.119901, Article 119901
Hauptverfasser: Hu, Xueyu, Xie, Yun, Wan, Yanhong, Yang, Yi, Wu, Xiaojun, Xia, Changrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119901
container_title Applied catalysis. B, Environmental
container_volume 286
creator Hu, Xueyu
Xie, Yun
Wan, Yanhong
Yang, Yi
Wu, Xiaojun
Xia, Changrong
description [Display omitted] •Antimony doping stabilizes cubic perovskite structure of SrCoO3-δ.•Remarkable oxygen reduction reaction activity is achieved.•The charge-transfer is confirmed as the rate-determining step.•Antimony doping enables perfect performance recovering from CO2 erosion.•The CO2 tolerance mechanism is revealed via experimental computational results. The cathode destruction by CO2 erosion has emerged as great obstacle to solid oxide fuel cells (SOFCs) application. In this work, replacing 18.75 % cobalt with antimony in SrCoO3-δ demonstrates substantial improvements in CO2 tolerance and perfect performance recovering from 10 vol% CO2 is achieved with symmetrical and single cell test. Both experimental and computational results prove the weakened CO2 adsorption strength. In addition, outstanding oxygen transport properties is obtained with chemical oxygen surface exchange coefficient of 1.97 × 10−3 cm s-1 at 600 °C, two orders of magnitude higher than the state-of-art cathode material La0.6Sr0.4Co0.2Fe0.8O3-δ. The single phase electrode shows brilliant oxygen reduction reaction activity with electrode resistance of 0.185 Ω cm2 at 600 °C, which is attributed to the accelerated charge transfer rate and augmented adsorbed oxygen species. The combination of exceptional electrochemical activity and excellent CO2 tolerance demonstrates its significant advantage for practical applications as promising cathode for low-temperature SOFCs.
doi_str_mv 10.1016/j.apcatb.2021.119901
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504808016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337321000278</els_id><sourcerecordid>2504808016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-685b3877acb5a0b62794a45fa49bd0739e0f2a4293584bbd32c4251cbdcfb4d53</originalsourceid><addsrcrecordid>eNp9kElLxTAUhYMo-Bz-gYuA6z4z9TXdCCJOILjRdchwq3m0TU1Sh__gjzaPunZ1L5dzzuV8CJ1RsqaEbi62az1Znc2aEUbXlLYtoXtoRWXDKy4l30cr0rJNxXnDD9FRSltCCONMrtDP1Zj9EMbvyoUJHE45hnKZB2yD0X3G4cs7wDrhKYbBJz--4vLqLZRjFyLuw2eVYZgg6jxHwCn03v2Zuhl6bKHv8afPbxi-djuMuQREE0bs_KLLoS_20cIJOuh0n-D0bx6jl9ub5-v76vHp7uH66rGynItcbWRtuGwabU2tidmwphVa1J0WrXGk4S2QjmnBWl5LYYzjzApWU2uc7YxwNT9G50tu6fQ-Q8pqG-Y4lpeK1URIIgvVohKLysaQUoROTdEPOn4rStSOu9qqhbvacVcL92K7XGxQGnx4iCpZD6Wd8xFsVi74_wN-AWDDkMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504808016</pqid></control><display><type>article</type><title>Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance</title><source>Elsevier ScienceDirect Journals</source><creator>Hu, Xueyu ; Xie, Yun ; Wan, Yanhong ; Yang, Yi ; Wu, Xiaojun ; Xia, Changrong</creator><creatorcontrib>Hu, Xueyu ; Xie, Yun ; Wan, Yanhong ; Yang, Yi ; Wu, Xiaojun ; Xia, Changrong</creatorcontrib><description>[Display omitted] •Antimony doping stabilizes cubic perovskite structure of SrCoO3-δ.•Remarkable oxygen reduction reaction activity is achieved.•The charge-transfer is confirmed as the rate-determining step.•Antimony doping enables perfect performance recovering from CO2 erosion.•The CO2 tolerance mechanism is revealed via experimental computational results. The cathode destruction by CO2 erosion has emerged as great obstacle to solid oxide fuel cells (SOFCs) application. In this work, replacing 18.75 % cobalt with antimony in SrCoO3-δ demonstrates substantial improvements in CO2 tolerance and perfect performance recovering from 10 vol% CO2 is achieved with symmetrical and single cell test. Both experimental and computational results prove the weakened CO2 adsorption strength. In addition, outstanding oxygen transport properties is obtained with chemical oxygen surface exchange coefficient of 1.97 × 10−3 cm s-1 at 600 °C, two orders of magnitude higher than the state-of-art cathode material La0.6Sr0.4Co0.2Fe0.8O3-δ. The single phase electrode shows brilliant oxygen reduction reaction activity with electrode resistance of 0.185 Ω cm2 at 600 °C, which is attributed to the accelerated charge transfer rate and augmented adsorbed oxygen species. The combination of exceptional electrochemical activity and excellent CO2 tolerance demonstrates its significant advantage for practical applications as promising cathode for low-temperature SOFCs.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2021.119901</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antimony ; Antimony doping ; Carbon dioxide ; Cathodes ; Charge transfer ; Chemical reduction ; CO2 tolerance ; Cobalt ; Cobalt oxides ; Computer applications ; Electrochemistry ; Electrode materials ; Electrodes ; Fuel cells ; Fuel technology ; Low temperature ; Oxygen ; Oxygen reduction reaction ; Oxygen reduction reactions ; Solid oxide fuel cell cathode ; Solid oxide fuel cells ; Strontium ; Strontium cobalt oxide ; Strontium oxides ; Temperature tolerance ; Transport properties</subject><ispartof>Applied catalysis. B, Environmental, 2021-06, Vol.286, p.119901, Article 119901</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-685b3877acb5a0b62794a45fa49bd0739e0f2a4293584bbd32c4251cbdcfb4d53</citedby><cites>FETCH-LOGICAL-c334t-685b3877acb5a0b62794a45fa49bd0739e0f2a4293584bbd32c4251cbdcfb4d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2021.119901$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Hu, Xueyu</creatorcontrib><creatorcontrib>Xie, Yun</creatorcontrib><creatorcontrib>Wan, Yanhong</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Xia, Changrong</creatorcontrib><title>Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Antimony doping stabilizes cubic perovskite structure of SrCoO3-δ.•Remarkable oxygen reduction reaction activity is achieved.•The charge-transfer is confirmed as the rate-determining step.•Antimony doping enables perfect performance recovering from CO2 erosion.•The CO2 tolerance mechanism is revealed via experimental computational results. The cathode destruction by CO2 erosion has emerged as great obstacle to solid oxide fuel cells (SOFCs) application. In this work, replacing 18.75 % cobalt with antimony in SrCoO3-δ demonstrates substantial improvements in CO2 tolerance and perfect performance recovering from 10 vol% CO2 is achieved with symmetrical and single cell test. Both experimental and computational results prove the weakened CO2 adsorption strength. In addition, outstanding oxygen transport properties is obtained with chemical oxygen surface exchange coefficient of 1.97 × 10−3 cm s-1 at 600 °C, two orders of magnitude higher than the state-of-art cathode material La0.6Sr0.4Co0.2Fe0.8O3-δ. The single phase electrode shows brilliant oxygen reduction reaction activity with electrode resistance of 0.185 Ω cm2 at 600 °C, which is attributed to the accelerated charge transfer rate and augmented adsorbed oxygen species. The combination of exceptional electrochemical activity and excellent CO2 tolerance demonstrates its significant advantage for practical applications as promising cathode for low-temperature SOFCs.</description><subject>Antimony</subject><subject>Antimony doping</subject><subject>Carbon dioxide</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>CO2 tolerance</subject><subject>Cobalt</subject><subject>Cobalt oxides</subject><subject>Computer applications</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Low temperature</subject><subject>Oxygen</subject><subject>Oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Solid oxide fuel cell cathode</subject><subject>Solid oxide fuel cells</subject><subject>Strontium</subject><subject>Strontium cobalt oxide</subject><subject>Strontium oxides</subject><subject>Temperature tolerance</subject><subject>Transport properties</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElLxTAUhYMo-Bz-gYuA6z4z9TXdCCJOILjRdchwq3m0TU1Sh__gjzaPunZ1L5dzzuV8CJ1RsqaEbi62az1Znc2aEUbXlLYtoXtoRWXDKy4l30cr0rJNxXnDD9FRSltCCONMrtDP1Zj9EMbvyoUJHE45hnKZB2yD0X3G4cs7wDrhKYbBJz--4vLqLZRjFyLuw2eVYZgg6jxHwCn03v2Zuhl6bKHv8afPbxi-djuMuQREE0bs_KLLoS_20cIJOuh0n-D0bx6jl9ub5-v76vHp7uH66rGynItcbWRtuGwabU2tidmwphVa1J0WrXGk4S2QjmnBWl5LYYzjzApWU2uc7YxwNT9G50tu6fQ-Q8pqG-Y4lpeK1URIIgvVohKLysaQUoROTdEPOn4rStSOu9qqhbvacVcL92K7XGxQGnx4iCpZD6Wd8xFsVi74_wN-AWDDkMA</recordid><startdate>20210605</startdate><enddate>20210605</enddate><creator>Hu, Xueyu</creator><creator>Xie, Yun</creator><creator>Wan, Yanhong</creator><creator>Yang, Yi</creator><creator>Wu, Xiaojun</creator><creator>Xia, Changrong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210605</creationdate><title>Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance</title><author>Hu, Xueyu ; Xie, Yun ; Wan, Yanhong ; Yang, Yi ; Wu, Xiaojun ; Xia, Changrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-685b3877acb5a0b62794a45fa49bd0739e0f2a4293584bbd32c4251cbdcfb4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antimony</topic><topic>Antimony doping</topic><topic>Carbon dioxide</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>CO2 tolerance</topic><topic>Cobalt</topic><topic>Cobalt oxides</topic><topic>Computer applications</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Low temperature</topic><topic>Oxygen</topic><topic>Oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Solid oxide fuel cell cathode</topic><topic>Solid oxide fuel cells</topic><topic>Strontium</topic><topic>Strontium cobalt oxide</topic><topic>Strontium oxides</topic><topic>Temperature tolerance</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xueyu</creatorcontrib><creatorcontrib>Xie, Yun</creatorcontrib><creatorcontrib>Wan, Yanhong</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Wu, Xiaojun</creatorcontrib><creatorcontrib>Xia, Changrong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xueyu</au><au>Xie, Yun</au><au>Wan, Yanhong</au><au>Yang, Yi</au><au>Wu, Xiaojun</au><au>Xia, Changrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2021-06-05</date><risdate>2021</risdate><volume>286</volume><spage>119901</spage><pages>119901-</pages><artnum>119901</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Antimony doping stabilizes cubic perovskite structure of SrCoO3-δ.•Remarkable oxygen reduction reaction activity is achieved.•The charge-transfer is confirmed as the rate-determining step.•Antimony doping enables perfect performance recovering from CO2 erosion.•The CO2 tolerance mechanism is revealed via experimental computational results. The cathode destruction by CO2 erosion has emerged as great obstacle to solid oxide fuel cells (SOFCs) application. In this work, replacing 18.75 % cobalt with antimony in SrCoO3-δ demonstrates substantial improvements in CO2 tolerance and perfect performance recovering from 10 vol% CO2 is achieved with symmetrical and single cell test. Both experimental and computational results prove the weakened CO2 adsorption strength. In addition, outstanding oxygen transport properties is obtained with chemical oxygen surface exchange coefficient of 1.97 × 10−3 cm s-1 at 600 °C, two orders of magnitude higher than the state-of-art cathode material La0.6Sr0.4Co0.2Fe0.8O3-δ. The single phase electrode shows brilliant oxygen reduction reaction activity with electrode resistance of 0.185 Ω cm2 at 600 °C, which is attributed to the accelerated charge transfer rate and augmented adsorbed oxygen species. The combination of exceptional electrochemical activity and excellent CO2 tolerance demonstrates its significant advantage for practical applications as promising cathode for low-temperature SOFCs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2021.119901</doi></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2021-06, Vol.286, p.119901, Article 119901
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2504808016
source Elsevier ScienceDirect Journals
subjects Antimony
Antimony doping
Carbon dioxide
Cathodes
Charge transfer
Chemical reduction
CO2 tolerance
Cobalt
Cobalt oxides
Computer applications
Electrochemistry
Electrode materials
Electrodes
Fuel cells
Fuel technology
Low temperature
Oxygen
Oxygen reduction reaction
Oxygen reduction reactions
Solid oxide fuel cell cathode
Solid oxide fuel cells
Strontium
Strontium cobalt oxide
Strontium oxides
Temperature tolerance
Transport properties
title Antimony-doped strontium cobalt oxide as promising cathode for low-temperature solid oxide fuel cell with excellent carbon dioxide tolerance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antimony-doped%20strontium%20cobalt%20oxide%20as%20promising%20cathode%20for%20low-temperature%20solid%20oxide%20fuel%20cell%20with%20excellent%20carbon%20dioxide%20tolerance&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Hu,%20Xueyu&rft.date=2021-06-05&rft.volume=286&rft.spage=119901&rft.pages=119901-&rft.artnum=119901&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2021.119901&rft_dat=%3Cproquest_cross%3E2504808016%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504808016&rft_id=info:pmid/&rft_els_id=S0926337321000278&rfr_iscdi=true