Effects of smart flap on aerodynamic performance of sinusoidal leading-edge wings at low Reynolds numbers

Sinusoidal leading-edge wings have shown a high performance after the stall region. In this study, the role of smart flaps in the aerodynamics of smooth and sinusoidal leading-edge wings at low Reynolds numbers of 29,000, 40,000 and 58,000 is investigated. Four wings with NACA 634-021 profile are fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2021-03, Vol.235 (4), p.439-450
Hauptverfasser: Mehraban, AA, Djavareshkian, MH, Sayegh, Y, Forouzi Feshalami, B, Azargoon, Y, Zaree, AH, Hassanalian, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 4
container_start_page 439
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 235
creator Mehraban, AA
Djavareshkian, MH
Sayegh, Y
Forouzi Feshalami, B
Azargoon, Y
Zaree, AH
Hassanalian, M
description Sinusoidal leading-edge wings have shown a high performance after the stall region. In this study, the role of smart flaps in the aerodynamics of smooth and sinusoidal leading-edge wings at low Reynolds numbers of 29,000, 40,000 and 58,000 is investigated. Four wings with NACA 634-021 profile are firstly designed and then manufactured by a 3 D printer. Beam bending equation is used to determine the smart flap chord deflection. Next, wind tunnel tests are carried out to measure the lift and drag forces of proposed wings for a wide range of angles of attack, from zero to 36 degrees. Results show that using trailing-edge smart flap in sinusoidal leading-edge wing delays the stall point compared to the same wing without flap. However, a combination of smooth leading-edge wing and smart flap advances the stall. Furthermore, it is found that wings with smart flap generally have a higher lift to drag ratio due to their excellent performance in producing lift.
doi_str_mv 10.1177/0954410020946903
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504702659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410020946903</sage_id><sourcerecordid>2504702659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-bf1651cdd8436c2b212674c40c018100e87c1622373fc3f71f6a7bb3ea7fa0e73</originalsourceid><addsrcrecordid>eNp1UN1LwzAQD6LgnL77GPC5evlosj7KmE4YCKLPJU0vo6NNatIy9t_bOUEQvJc7-H3c3Y-QWwb3jGn9AEUuJQPgUEhVgDgjMw6SZQJ4fk5mRzg74pfkKqUdTJUrMSPNyjm0Q6LB0dSZOFDXmp4GTw3GUB-86RpLe4wuxM54i9_Exo8pNLVpaYumbvw2w3qLdD9NiZqBtmFP3_DgQ1sn6seuwpiuyYUzbcKbnz4nH0-r9-U627w-vywfN5kVkA9Z5ZjKma3rhRTK8oozrrS0EiywxXQ_LrRlinOhhbPCaeaU0VUl0GhnALWYk7uTbx_D54hpKHdhjH5aWfIcpAau8mJiwYllY0gpoiv72Ez_H0oG5THQ8m-gkyQ7SZLZ4q_pv_wviC11YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504702659</pqid></control><display><type>article</type><title>Effects of smart flap on aerodynamic performance of sinusoidal leading-edge wings at low Reynolds numbers</title><source>SAGE Complete</source><creator>Mehraban, AA ; Djavareshkian, MH ; Sayegh, Y ; Forouzi Feshalami, B ; Azargoon, Y ; Zaree, AH ; Hassanalian, M</creator><creatorcontrib>Mehraban, AA ; Djavareshkian, MH ; Sayegh, Y ; Forouzi Feshalami, B ; Azargoon, Y ; Zaree, AH ; Hassanalian, M</creatorcontrib><description>Sinusoidal leading-edge wings have shown a high performance after the stall region. In this study, the role of smart flaps in the aerodynamics of smooth and sinusoidal leading-edge wings at low Reynolds numbers of 29,000, 40,000 and 58,000 is investigated. Four wings with NACA 634-021 profile are firstly designed and then manufactured by a 3 D printer. Beam bending equation is used to determine the smart flap chord deflection. Next, wind tunnel tests are carried out to measure the lift and drag forces of proposed wings for a wide range of angles of attack, from zero to 36 degrees. Results show that using trailing-edge smart flap in sinusoidal leading-edge wing delays the stall point compared to the same wing without flap. However, a combination of smooth leading-edge wing and smart flap advances the stall. Furthermore, it is found that wings with smart flap generally have a higher lift to drag ratio due to their excellent performance in producing lift.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410020946903</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aerodynamics ; Angle of attack ; Drag ; Fluid flow ; Leading edges ; Lift ; Low Reynolds number ; Stalling ; Three dimensional printing ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2021-03, Vol.235 (4), p.439-450</ispartof><rights>IMechE 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-bf1651cdd8436c2b212674c40c018100e87c1622373fc3f71f6a7bb3ea7fa0e73</cites><orcidid>0000-0002-4457-3674 ; 0000-0003-1766-1190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410020946903$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410020946903$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Mehraban, AA</creatorcontrib><creatorcontrib>Djavareshkian, MH</creatorcontrib><creatorcontrib>Sayegh, Y</creatorcontrib><creatorcontrib>Forouzi Feshalami, B</creatorcontrib><creatorcontrib>Azargoon, Y</creatorcontrib><creatorcontrib>Zaree, AH</creatorcontrib><creatorcontrib>Hassanalian, M</creatorcontrib><title>Effects of smart flap on aerodynamic performance of sinusoidal leading-edge wings at low Reynolds numbers</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>Sinusoidal leading-edge wings have shown a high performance after the stall region. In this study, the role of smart flaps in the aerodynamics of smooth and sinusoidal leading-edge wings at low Reynolds numbers of 29,000, 40,000 and 58,000 is investigated. Four wings with NACA 634-021 profile are firstly designed and then manufactured by a 3 D printer. Beam bending equation is used to determine the smart flap chord deflection. Next, wind tunnel tests are carried out to measure the lift and drag forces of proposed wings for a wide range of angles of attack, from zero to 36 degrees. Results show that using trailing-edge smart flap in sinusoidal leading-edge wing delays the stall point compared to the same wing without flap. However, a combination of smooth leading-edge wing and smart flap advances the stall. Furthermore, it is found that wings with smart flap generally have a higher lift to drag ratio due to their excellent performance in producing lift.</description><subject>Aerodynamics</subject><subject>Angle of attack</subject><subject>Drag</subject><subject>Fluid flow</subject><subject>Leading edges</subject><subject>Lift</subject><subject>Low Reynolds number</subject><subject>Stalling</subject><subject>Three dimensional printing</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UN1LwzAQD6LgnL77GPC5evlosj7KmE4YCKLPJU0vo6NNatIy9t_bOUEQvJc7-H3c3Y-QWwb3jGn9AEUuJQPgUEhVgDgjMw6SZQJ4fk5mRzg74pfkKqUdTJUrMSPNyjm0Q6LB0dSZOFDXmp4GTw3GUB-86RpLe4wuxM54i9_Exo8pNLVpaYumbvw2w3qLdD9NiZqBtmFP3_DgQ1sn6seuwpiuyYUzbcKbnz4nH0-r9-U627w-vywfN5kVkA9Z5ZjKma3rhRTK8oozrrS0EiywxXQ_LrRlinOhhbPCaeaU0VUl0GhnALWYk7uTbx_D54hpKHdhjH5aWfIcpAau8mJiwYllY0gpoiv72Ez_H0oG5THQ8m-gkyQ7SZLZ4q_pv_wviC11YA</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Mehraban, AA</creator><creator>Djavareshkian, MH</creator><creator>Sayegh, Y</creator><creator>Forouzi Feshalami, B</creator><creator>Azargoon, Y</creator><creator>Zaree, AH</creator><creator>Hassanalian, M</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4457-3674</orcidid><orcidid>https://orcid.org/0000-0003-1766-1190</orcidid></search><sort><creationdate>20210301</creationdate><title>Effects of smart flap on aerodynamic performance of sinusoidal leading-edge wings at low Reynolds numbers</title><author>Mehraban, AA ; Djavareshkian, MH ; Sayegh, Y ; Forouzi Feshalami, B ; Azargoon, Y ; Zaree, AH ; Hassanalian, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-bf1651cdd8436c2b212674c40c018100e87c1622373fc3f71f6a7bb3ea7fa0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Angle of attack</topic><topic>Drag</topic><topic>Fluid flow</topic><topic>Leading edges</topic><topic>Lift</topic><topic>Low Reynolds number</topic><topic>Stalling</topic><topic>Three dimensional printing</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehraban, AA</creatorcontrib><creatorcontrib>Djavareshkian, MH</creatorcontrib><creatorcontrib>Sayegh, Y</creatorcontrib><creatorcontrib>Forouzi Feshalami, B</creatorcontrib><creatorcontrib>Azargoon, Y</creatorcontrib><creatorcontrib>Zaree, AH</creatorcontrib><creatorcontrib>Hassanalian, M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehraban, AA</au><au>Djavareshkian, MH</au><au>Sayegh, Y</au><au>Forouzi Feshalami, B</au><au>Azargoon, Y</au><au>Zaree, AH</au><au>Hassanalian, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of smart flap on aerodynamic performance of sinusoidal leading-edge wings at low Reynolds numbers</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>235</volume><issue>4</issue><spage>439</spage><epage>450</epage><pages>439-450</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>Sinusoidal leading-edge wings have shown a high performance after the stall region. In this study, the role of smart flaps in the aerodynamics of smooth and sinusoidal leading-edge wings at low Reynolds numbers of 29,000, 40,000 and 58,000 is investigated. Four wings with NACA 634-021 profile are firstly designed and then manufactured by a 3 D printer. Beam bending equation is used to determine the smart flap chord deflection. Next, wind tunnel tests are carried out to measure the lift and drag forces of proposed wings for a wide range of angles of attack, from zero to 36 degrees. Results show that using trailing-edge smart flap in sinusoidal leading-edge wing delays the stall point compared to the same wing without flap. However, a combination of smooth leading-edge wing and smart flap advances the stall. Furthermore, it is found that wings with smart flap generally have a higher lift to drag ratio due to their excellent performance in producing lift.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410020946903</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4457-3674</orcidid><orcidid>https://orcid.org/0000-0003-1766-1190</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2021-03, Vol.235 (4), p.439-450
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_journals_2504702659
source SAGE Complete
subjects Aerodynamics
Angle of attack
Drag
Fluid flow
Leading edges
Lift
Low Reynolds number
Stalling
Three dimensional printing
Wind tunnel testing
Wind tunnels
title Effects of smart flap on aerodynamic performance of sinusoidal leading-edge wings at low Reynolds numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20smart%20flap%20on%20aerodynamic%20performance%20of%20sinusoidal%20leading-edge%20wings%20at%20low%20Reynolds%20numbers&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Mehraban,%20AA&rft.date=2021-03-01&rft.volume=235&rft.issue=4&rft.spage=439&rft.epage=450&rft.pages=439-450&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410020946903&rft_dat=%3Cproquest_cross%3E2504702659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504702659&rft_id=info:pmid/&rft_sage_id=10.1177_0954410020946903&rfr_iscdi=true