An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal therapy

Due to the hydrophobicity of the cyanine dye and the huge conjugated plane, the cyanine dye is prone to H-aggregation in aqueous solution, and the ultraviolet absorption is blue-shifted. Here, a hydrophilic quaternary stereo-specific cyanine (HQS-Cy) dye has been synthesized and polypeptide based na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2021-03, Vol.9 (11), p.2688-2696
Hauptverfasser: Qian, Hongyun, Cheng, Quan, Tian, Youliang, Dang, Huiping, Teng, Changchang, Yan, Lifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the hydrophobicity of the cyanine dye and the huge conjugated plane, the cyanine dye is prone to H-aggregation in aqueous solution, and the ultraviolet absorption is blue-shifted. Here, a hydrophilic quaternary stereo-specific cyanine (HQS-Cy) dye has been synthesized and polypeptide based nanoparticles have been prepared, which improve the water solubility of the cyanine in two aspects. First, at the molecular level, the sulfonic acid group increases the water solubility of the dye molecule while the dimethyl-ammonium functional group repels the molecule through the charge-charge interaction, destroying the planar characteristics of the cyanine structure, increasing the molecular distance between the dye molecules, and preventing the accumulation of cyanine. Secondly, at the nano-micelle level, the use of amphiphilic polypeptide blocks to encapsulate the dye increases the water solubility of the dye while also increasing its biocompatibility. The HQS-Cy@P NPs prepared by the above methods exhibit the maximum absorption at 985 nm and maximum fluorescence emission at 1050 nm in aqueous solution. HQS-Cy@P exhibits good photothermal stability and significant photothermal conversion efficiency of about 35.5%, and both in vitro and in vivo studies revealed that it is an efficient system for NIR-II imaging-guided photothermal therapy of cancer. Polypeptide based nanoparticles of hydrophilic quaternary stereo-specific cyanine (HQS-Cy) have been synthesized, which show efficient NIR-II imaging-guided photothermal therapy for cancer.
ISSN:2050-750X
2050-7518
DOI:10.1039/d1tb00018g