Change of drift in one-dimensional diffusions
It is generally understood that a given one-dimensional diffusion may be transformed by a Cameron–Martin–Girsanov measure change into another one-dimensional diffusion with the same volatility but a different drift. But to achieve this, we have to know that the change-of-measure local martingale tha...
Gespeichert in:
Veröffentlicht in: | Finance and stochastics 2021-04, Vol.25 (2), p.359-381 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 2 |
container_start_page | 359 |
container_title | Finance and stochastics |
container_volume | 25 |
creator | Desmettre, Sascha Leobacher, Gunther Rogers, L. C. G. |
description | It is generally understood that a given one-dimensional diffusion may be transformed by a Cameron–Martin–Girsanov measure change into another one-dimensional diffusion with the same volatility but a different drift. But to achieve this, we have to know that the change-of-measure local martingale that we write down is a true martingale. We provide a complete characterisation of when this happens. This enables us to discuss the absence of arbitrage in a generalised Heston model including the case where the Feller condition for the volatility process is violated. |
doi_str_mv | 10.1007/s00780-021-00451-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2504165076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504165076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-2716f64ac6b9c7b3b02e0fe881d9e7ebf67fd981a6e3321def896b5eebbb8a093</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm4_NUYpfUPCi57DZnWhKu6lJS_Hfm3WF3mRgZmDed2Z4CLlmcMsA9F0uqQEKnFEAIRk9nJAZEzWnjHF-SmZghKHcNOKcXOS8AgAuQc4IXXy2wwdW0Vd9Cn5XhaGKA9I-bHDIIQ7tuuqD9_uxz5fkzLfrjFd_dU7eHx_eFs90-fr0srhf0k7Ieke5Zsor0XbKmU672gFH8Ng0rDeo0XmlfW8a1iqsa8569I1RTiI655oWTD0nN9PebYpfe8w7u4r7VH7JtrwtmJKgVVHxSdWlmHNCb7cpbNr0bRnYEYudsNiCxf5isYdiqiYTdnEI-WjRUrIxxuv1JMllWOCk4_V_Fv8AskNvjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504165076</pqid></control><display><type>article</type><title>Change of drift in one-dimensional diffusions</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Desmettre, Sascha ; Leobacher, Gunther ; Rogers, L. C. G.</creator><creatorcontrib>Desmettre, Sascha ; Leobacher, Gunther ; Rogers, L. C. G.</creatorcontrib><description>It is generally understood that a given one-dimensional diffusion may be transformed by a Cameron–Martin–Girsanov measure change into another one-dimensional diffusion with the same volatility but a different drift. But to achieve this, we have to know that the change-of-measure local martingale that we write down is a true martingale. We provide a complete characterisation of when this happens. This enables us to discuss the absence of arbitrage in a generalised Heston model including the case where the Feller condition for the volatility process is violated.</description><identifier>ISSN: 0949-2984</identifier><identifier>EISSN: 1432-1122</identifier><identifier>DOI: 10.1007/s00780-021-00451-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arbitrage ; Diffusion ; Dimensional changes ; Drift ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Growth rate ; Insurance ; Management ; Martingales ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Volatility</subject><ispartof>Finance and stochastics, 2021-04, Vol.25 (2), p.359-381</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-2716f64ac6b9c7b3b02e0fe881d9e7ebf67fd981a6e3321def896b5eebbb8a093</citedby><cites>FETCH-LOGICAL-c453t-2716f64ac6b9c7b3b02e0fe881d9e7ebf67fd981a6e3321def896b5eebbb8a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00780-021-00451-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00780-021-00451-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Desmettre, Sascha</creatorcontrib><creatorcontrib>Leobacher, Gunther</creatorcontrib><creatorcontrib>Rogers, L. C. G.</creatorcontrib><title>Change of drift in one-dimensional diffusions</title><title>Finance and stochastics</title><addtitle>Finance Stoch</addtitle><description>It is generally understood that a given one-dimensional diffusion may be transformed by a Cameron–Martin–Girsanov measure change into another one-dimensional diffusion with the same volatility but a different drift. But to achieve this, we have to know that the change-of-measure local martingale that we write down is a true martingale. We provide a complete characterisation of when this happens. This enables us to discuss the absence of arbitrage in a generalised Heston model including the case where the Feller condition for the volatility process is violated.</description><subject>Arbitrage</subject><subject>Diffusion</subject><subject>Dimensional changes</subject><subject>Drift</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Growth rate</subject><subject>Insurance</subject><subject>Management</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Volatility</subject><issn>0949-2984</issn><issn>1432-1122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gkm4_NUYpfUPCi57DZnWhKu6lJS_Hfm3WF3mRgZmDed2Z4CLlmcMsA9F0uqQEKnFEAIRk9nJAZEzWnjHF-SmZghKHcNOKcXOS8AgAuQc4IXXy2wwdW0Vd9Cn5XhaGKA9I-bHDIIQ7tuuqD9_uxz5fkzLfrjFd_dU7eHx_eFs90-fr0srhf0k7Ieke5Zsor0XbKmU672gFH8Ng0rDeo0XmlfW8a1iqsa8569I1RTiI655oWTD0nN9PebYpfe8w7u4r7VH7JtrwtmJKgVVHxSdWlmHNCb7cpbNr0bRnYEYudsNiCxf5isYdiqiYTdnEI-WjRUrIxxuv1JMllWOCk4_V_Fv8AskNvjA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Desmettre, Sascha</creator><creator>Leobacher, Gunther</creator><creator>Rogers, L. C. G.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20210401</creationdate><title>Change of drift in one-dimensional diffusions</title><author>Desmettre, Sascha ; Leobacher, Gunther ; Rogers, L. C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-2716f64ac6b9c7b3b02e0fe881d9e7ebf67fd981a6e3321def896b5eebbb8a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arbitrage</topic><topic>Diffusion</topic><topic>Dimensional changes</topic><topic>Drift</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Growth rate</topic><topic>Insurance</topic><topic>Management</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desmettre, Sascha</creatorcontrib><creatorcontrib>Leobacher, Gunther</creatorcontrib><creatorcontrib>Rogers, L. C. G.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Finance and stochastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desmettre, Sascha</au><au>Leobacher, Gunther</au><au>Rogers, L. C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Change of drift in one-dimensional diffusions</atitle><jtitle>Finance and stochastics</jtitle><stitle>Finance Stoch</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>25</volume><issue>2</issue><spage>359</spage><epage>381</epage><pages>359-381</pages><issn>0949-2984</issn><eissn>1432-1122</eissn><abstract>It is generally understood that a given one-dimensional diffusion may be transformed by a Cameron–Martin–Girsanov measure change into another one-dimensional diffusion with the same volatility but a different drift. But to achieve this, we have to know that the change-of-measure local martingale that we write down is a true martingale. We provide a complete characterisation of when this happens. This enables us to discuss the absence of arbitrage in a generalised Heston model including the case where the Feller condition for the volatility process is violated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00780-021-00451-w</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-2984 |
ispartof | Finance and stochastics, 2021-04, Vol.25 (2), p.359-381 |
issn | 0949-2984 1432-1122 |
language | eng |
recordid | cdi_proquest_journals_2504165076 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Arbitrage Diffusion Dimensional changes Drift Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Growth rate Insurance Management Martingales Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Quantitative Finance Statistics for Business Volatility |
title | Change of drift in one-dimensional diffusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Change%20of%20drift%20in%20one-dimensional%20diffusions&rft.jtitle=Finance%20and%20stochastics&rft.au=Desmettre,%20Sascha&rft.date=2021-04-01&rft.volume=25&rft.issue=2&rft.spage=359&rft.epage=381&rft.pages=359-381&rft.issn=0949-2984&rft.eissn=1432-1122&rft_id=info:doi/10.1007/s00780-021-00451-w&rft_dat=%3Cproquest_cross%3E2504165076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504165076&rft_id=info:pmid/&rfr_iscdi=true |