Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters
In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Sol...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-03, Vol.910 (1), p.8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | The Astrophysical journal |
container_volume | 910 |
creator | Yi, Kangwoo Moon, Yong-Jae Lim, Daye Park, Eunsu Lee, Harim |
description | In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts “Yes” or “No” for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values. |
doi_str_mv | 10.3847/1538-4357/abdebe |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503934868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503934868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-bbb26d70ee136e7feab124be31d04b84affcc9d047770673aefefa6d6b3c3faa3</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEEmNw5xiJc1nadEl7RIPBpCEmvsQtclKHdcqaknQS--9pGeJi-1nPz9KPkMuUXfMil5N0yosk51M5AV2hxiMy-l8dkxFjLE8Elx-n5CzGzSCzshwR917HHTh69906aKCrfUO9pUBvEVu6RAhN3XzSF-8g0HlfkM59QAOxo4--Qkehqeiii_QZ3e95XNct7TxdrfexNn30CgJsscMQz8mJBRfx4q-Pydv87nX2kCyf7hezm2ViuCy7RGudiUoyxJQLlBZBp1mukacVy3WRg7XGlP0spWRCckCLFkQlNDfcAvAxuTrktsF_7TB2auN3oelfqmzKeMnzQhS9ix1cJvgYA1rVhnoLYa9SpgamagCoBoDqwJT_ANA9bUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503934868</pqid></control><display><type>article</type><title>Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><creator>Yi, Kangwoo ; Moon, Yong-Jae ; Lim, Daye ; Park, Eunsu ; Lee, Harim</creator><creatorcontrib>Yi, Kangwoo ; Moon, Yong-Jae ; Lim, Daye ; Park, Eunsu ; Lee, Harim</creatorcontrib><description>In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts “Yes” or “No” for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abdebe</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Artificial neural networks ; Astrophysics ; Back propagation ; Back propagation networks ; Deep learning ; Feature extraction ; Flux density ; Forecasting ; Free energy ; GOES satellites ; Helicity ; Magnetic flux ; Mathematical models ; Neural networks ; Observatories ; Parameters ; Photosphere ; Physical properties ; Polarity ; Satellites ; SOHO Mission ; Solar activity ; Solar activity regions ; Solar flares ; Solar observatories ; Weather</subject><ispartof>The Astrophysical journal, 2021-03, Vol.910 (1), p.8</ispartof><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-bbb26d70ee136e7feab124be31d04b84affcc9d047770673aefefa6d6b3c3faa3</citedby><cites>FETCH-LOGICAL-c379t-bbb26d70ee136e7feab124be31d04b84affcc9d047770673aefefa6d6b3c3faa3</cites><orcidid>0000-0003-0969-286X ; 0000-0001-9914-9080 ; 0000-0001-6216-6944 ; 0000-0003-4342-9483 ; 0000-0002-9300-8073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yi, Kangwoo</creatorcontrib><creatorcontrib>Moon, Yong-Jae</creatorcontrib><creatorcontrib>Lim, Daye</creatorcontrib><creatorcontrib>Park, Eunsu</creatorcontrib><creatorcontrib>Lee, Harim</creatorcontrib><title>Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters</title><title>The Astrophysical journal</title><description>In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts “Yes” or “No” for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.</description><subject>Artificial neural networks</subject><subject>Astrophysics</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Flux density</subject><subject>Forecasting</subject><subject>Free energy</subject><subject>GOES satellites</subject><subject>Helicity</subject><subject>Magnetic flux</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Observatories</subject><subject>Parameters</subject><subject>Photosphere</subject><subject>Physical properties</subject><subject>Polarity</subject><subject>Satellites</subject><subject>SOHO Mission</subject><subject>Solar activity</subject><subject>Solar activity regions</subject><subject>Solar flares</subject><subject>Solar observatories</subject><subject>Weather</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwzAMxSMEEmNw5xiJc1nadEl7RIPBpCEmvsQtclKHdcqaknQS--9pGeJi-1nPz9KPkMuUXfMil5N0yosk51M5AV2hxiMy-l8dkxFjLE8Elx-n5CzGzSCzshwR917HHTh69906aKCrfUO9pUBvEVu6RAhN3XzSF-8g0HlfkM59QAOxo4--Qkehqeiii_QZ3e95XNct7TxdrfexNn30CgJsscMQz8mJBRfx4q-Pydv87nX2kCyf7hezm2ViuCy7RGudiUoyxJQLlBZBp1mukacVy3WRg7XGlP0spWRCckCLFkQlNDfcAvAxuTrktsF_7TB2auN3oelfqmzKeMnzQhS9ix1cJvgYA1rVhnoLYa9SpgamagCoBoDqwJT_ANA9bUw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Yi, Kangwoo</creator><creator>Moon, Yong-Jae</creator><creator>Lim, Daye</creator><creator>Park, Eunsu</creator><creator>Lee, Harim</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0969-286X</orcidid><orcidid>https://orcid.org/0000-0001-9914-9080</orcidid><orcidid>https://orcid.org/0000-0001-6216-6944</orcidid><orcidid>https://orcid.org/0000-0003-4342-9483</orcidid><orcidid>https://orcid.org/0000-0002-9300-8073</orcidid></search><sort><creationdate>20210301</creationdate><title>Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters</title><author>Yi, Kangwoo ; Moon, Yong-Jae ; Lim, Daye ; Park, Eunsu ; Lee, Harim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-bbb26d70ee136e7feab124be31d04b84affcc9d047770673aefefa6d6b3c3faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Astrophysics</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Flux density</topic><topic>Forecasting</topic><topic>Free energy</topic><topic>GOES satellites</topic><topic>Helicity</topic><topic>Magnetic flux</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Observatories</topic><topic>Parameters</topic><topic>Photosphere</topic><topic>Physical properties</topic><topic>Polarity</topic><topic>Satellites</topic><topic>SOHO Mission</topic><topic>Solar activity</topic><topic>Solar activity regions</topic><topic>Solar flares</topic><topic>Solar observatories</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Kangwoo</creatorcontrib><creatorcontrib>Moon, Yong-Jae</creatorcontrib><creatorcontrib>Lim, Daye</creatorcontrib><creatorcontrib>Park, Eunsu</creatorcontrib><creatorcontrib>Lee, Harim</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Kangwoo</au><au>Moon, Yong-Jae</au><au>Lim, Daye</au><au>Park, Eunsu</au><au>Lee, Harim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters</atitle><jtitle>The Astrophysical journal</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>910</volume><issue>1</issue><spage>8</spage><pages>8-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts “Yes” or “No” for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/abdebe</doi><orcidid>https://orcid.org/0000-0003-0969-286X</orcidid><orcidid>https://orcid.org/0000-0001-9914-9080</orcidid><orcidid>https://orcid.org/0000-0001-6216-6944</orcidid><orcidid>https://orcid.org/0000-0003-4342-9483</orcidid><orcidid>https://orcid.org/0000-0002-9300-8073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-03, Vol.910 (1), p.8 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2503934868 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection |
subjects | Artificial neural networks Astrophysics Back propagation Back propagation networks Deep learning Feature extraction Flux density Forecasting Free energy GOES satellites Helicity Magnetic flux Mathematical models Neural networks Observatories Parameters Photosphere Physical properties Polarity Satellites SOHO Mission Solar activity Solar activity regions Solar flares Solar observatories Weather |
title | Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Explanation%20of%20a%20Deep%20Learning%20Solar%20Flare%20Forecast%20Model%20and%20Its%20Relationship%20to%20Physical%20Parameters&rft.jtitle=The%20Astrophysical%20journal&rft.au=Yi,%20Kangwoo&rft.date=2021-03-01&rft.volume=910&rft.issue=1&rft.spage=8&rft.pages=8-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abdebe&rft_dat=%3Cproquest_cross%3E2503934868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503934868&rft_id=info:pmid/&rfr_iscdi=true |