Dust Growth in Molecular Cloud Envelopes: A Numerical Approach

Variations in the grain size distribution are to be expected in the interstellar medium (ISM) owing to grain growth and destruction. In this work, we present a dust collision model to be implemented inside a magnetohydrodynamic (MHD) code that takes into account grain growth and shattering of charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-03, Vol.909 (2), p.206
Hauptverfasser: Beitia-Antero, Leire, Gómez de Castro, Ana I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 206
container_title The Astrophysical journal
container_volume 909
creator Beitia-Antero, Leire
Gómez de Castro, Ana I.
description Variations in the grain size distribution are to be expected in the interstellar medium (ISM) owing to grain growth and destruction. In this work, we present a dust collision model to be implemented inside a magnetohydrodynamic (MHD) code that takes into account grain growth and shattering of charged dust grains of a given composition (silicate or graphite). We integrate this model in the MHD code Athena and build on a previous implementation of the dynamics of charged dust grains in the same code. To demonstrate the performance of this coagulation model, we study the variations in the grain size distribution of a single-sized population of dust with radius 0.05 μ m inside several dust filaments formed during a 2D MHD simulation. We also consider a realistic dust distribution with sizes ranging from 50 Å to 0.25 μ m and analyze the variations in both the size distribution for graphite and silicates and the far-ultraviolet extinction curve. From the obtained results, we conclude that the methodology here presented, based on the MHD evolution of the equation of motion for a charged particle, is optimal for studying the coagulation of charged dust grains in a diffuse regime such as a molecular cloud envelope. Observationally, these variations in the dust size distribution are translated into variations in the far-ultraviolet extinction curve, and they are mainly caused by small graphite dust grains.
doi_str_mv 10.3847/1538-4357/abe45f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503934844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503934844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-b6b1a70e1a962e89ac1dd5ff3ba31f862b6c2e10e39d90c89d2b73dade5d87623</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd3jwHPdUm-tE08CGPOKUy9KHgLafKVbXRLTVqH_70rE0-P93i8Bz9Crjm7BSXLCc9BZRLycmIrlHl9Qkb_0SkZMcZkVkD5eU4uUtoMVmg9IvcPferoIoZ9t6LrHX0JDbq-sZHOmtB7Ot99YxNaTHd0Sl_7Lca1sw2dtm0M1q0uyVltm4RXfzomH4_z99lTtnxbPM-my8wBhy6riorbkiG3uhCotHXc-7yuobLAa1WIqnACOUPQXjOntBdVCd56zL0qCwFjcnPcPdx-9Zg6swl93B0ujcgZaJBKykOLHVsuhpQi1qaN662NP4YzM1AyAxIzIDFHSvALQu1apQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503934844</pqid></control><display><type>article</type><title>Dust Growth in Molecular Cloud Envelopes: A Numerical Approach</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Beitia-Antero, Leire ; Gómez de Castro, Ana I.</creator><creatorcontrib>Beitia-Antero, Leire ; Gómez de Castro, Ana I.</creatorcontrib><description>Variations in the grain size distribution are to be expected in the interstellar medium (ISM) owing to grain growth and destruction. In this work, we present a dust collision model to be implemented inside a magnetohydrodynamic (MHD) code that takes into account grain growth and shattering of charged dust grains of a given composition (silicate or graphite). We integrate this model in the MHD code Athena and build on a previous implementation of the dynamics of charged dust grains in the same code. To demonstrate the performance of this coagulation model, we study the variations in the grain size distribution of a single-sized population of dust with radius 0.05 μ m inside several dust filaments formed during a 2D MHD simulation. We also consider a realistic dust distribution with sizes ranging from 50 Å to 0.25 μ m and analyze the variations in both the size distribution for graphite and silicates and the far-ultraviolet extinction curve. From the obtained results, we conclude that the methodology here presented, based on the MHD evolution of the equation of motion for a charged particle, is optimal for studying the coagulation of charged dust grains in a diffuse regime such as a molecular cloud envelope. Observationally, these variations in the dust size distribution are translated into variations in the far-ultraviolet extinction curve, and they are mainly caused by small graphite dust grains.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abe45f</identifier><language>eng</language><publisher>Philadelphia: IOP Publishing</publisher><subject>Astrophysics ; Building codes ; Charged particles ; Coagulation ; Computational fluid dynamics ; Dust ; Equations of motion ; Extinction ; Filaments ; Fluid flow ; Grain growth ; Grain size ; Grain size distribution ; Graphite ; Interstellar matter ; Interstellar medium ; Magnetohydrodynamics ; Molecular clouds ; Particle size ; Particle size distribution ; Silicates</subject><ispartof>The Astrophysical journal, 2021-03, Vol.909 (2), p.206</ispartof><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-b6b1a70e1a962e89ac1dd5ff3ba31f862b6c2e10e39d90c89d2b73dade5d87623</citedby><cites>FETCH-LOGICAL-c313t-b6b1a70e1a962e89ac1dd5ff3ba31f862b6c2e10e39d90c89d2b73dade5d87623</cites><orcidid>0000-0003-0833-4075 ; 0000-0002-3598-9643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beitia-Antero, Leire</creatorcontrib><creatorcontrib>Gómez de Castro, Ana I.</creatorcontrib><title>Dust Growth in Molecular Cloud Envelopes: A Numerical Approach</title><title>The Astrophysical journal</title><description>Variations in the grain size distribution are to be expected in the interstellar medium (ISM) owing to grain growth and destruction. In this work, we present a dust collision model to be implemented inside a magnetohydrodynamic (MHD) code that takes into account grain growth and shattering of charged dust grains of a given composition (silicate or graphite). We integrate this model in the MHD code Athena and build on a previous implementation of the dynamics of charged dust grains in the same code. To demonstrate the performance of this coagulation model, we study the variations in the grain size distribution of a single-sized population of dust with radius 0.05 μ m inside several dust filaments formed during a 2D MHD simulation. We also consider a realistic dust distribution with sizes ranging from 50 Å to 0.25 μ m and analyze the variations in both the size distribution for graphite and silicates and the far-ultraviolet extinction curve. From the obtained results, we conclude that the methodology here presented, based on the MHD evolution of the equation of motion for a charged particle, is optimal for studying the coagulation of charged dust grains in a diffuse regime such as a molecular cloud envelope. Observationally, these variations in the dust size distribution are translated into variations in the far-ultraviolet extinction curve, and they are mainly caused by small graphite dust grains.</description><subject>Astrophysics</subject><subject>Building codes</subject><subject>Charged particles</subject><subject>Coagulation</subject><subject>Computational fluid dynamics</subject><subject>Dust</subject><subject>Equations of motion</subject><subject>Extinction</subject><subject>Filaments</subject><subject>Fluid flow</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Graphite</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Magnetohydrodynamics</subject><subject>Molecular clouds</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Silicates</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAYxYMoOKd3jwHPdUm-tE08CGPOKUy9KHgLafKVbXRLTVqH_70rE0-P93i8Bz9Crjm7BSXLCc9BZRLycmIrlHl9Qkb_0SkZMcZkVkD5eU4uUtoMVmg9IvcPferoIoZ9t6LrHX0JDbq-sZHOmtB7Ot99YxNaTHd0Sl_7Lca1sw2dtm0M1q0uyVltm4RXfzomH4_z99lTtnxbPM-my8wBhy6riorbkiG3uhCotHXc-7yuobLAa1WIqnACOUPQXjOntBdVCd56zL0qCwFjcnPcPdx-9Zg6swl93B0ujcgZaJBKykOLHVsuhpQi1qaN662NP4YzM1AyAxIzIDFHSvALQu1apQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Beitia-Antero, Leire</creator><creator>Gómez de Castro, Ana I.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0833-4075</orcidid><orcidid>https://orcid.org/0000-0002-3598-9643</orcidid></search><sort><creationdate>20210301</creationdate><title>Dust Growth in Molecular Cloud Envelopes: A Numerical Approach</title><author>Beitia-Antero, Leire ; Gómez de Castro, Ana I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-b6b1a70e1a962e89ac1dd5ff3ba31f862b6c2e10e39d90c89d2b73dade5d87623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Building codes</topic><topic>Charged particles</topic><topic>Coagulation</topic><topic>Computational fluid dynamics</topic><topic>Dust</topic><topic>Equations of motion</topic><topic>Extinction</topic><topic>Filaments</topic><topic>Fluid flow</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Graphite</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Magnetohydrodynamics</topic><topic>Molecular clouds</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beitia-Antero, Leire</creatorcontrib><creatorcontrib>Gómez de Castro, Ana I.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beitia-Antero, Leire</au><au>Gómez de Castro, Ana I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dust Growth in Molecular Cloud Envelopes: A Numerical Approach</atitle><jtitle>The Astrophysical journal</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>909</volume><issue>2</issue><spage>206</spage><pages>206-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Variations in the grain size distribution are to be expected in the interstellar medium (ISM) owing to grain growth and destruction. In this work, we present a dust collision model to be implemented inside a magnetohydrodynamic (MHD) code that takes into account grain growth and shattering of charged dust grains of a given composition (silicate or graphite). We integrate this model in the MHD code Athena and build on a previous implementation of the dynamics of charged dust grains in the same code. To demonstrate the performance of this coagulation model, we study the variations in the grain size distribution of a single-sized population of dust with radius 0.05 μ m inside several dust filaments formed during a 2D MHD simulation. We also consider a realistic dust distribution with sizes ranging from 50 Å to 0.25 μ m and analyze the variations in both the size distribution for graphite and silicates and the far-ultraviolet extinction curve. From the obtained results, we conclude that the methodology here presented, based on the MHD evolution of the equation of motion for a charged particle, is optimal for studying the coagulation of charged dust grains in a diffuse regime such as a molecular cloud envelope. Observationally, these variations in the dust size distribution are translated into variations in the far-ultraviolet extinction curve, and they are mainly caused by small graphite dust grains.</abstract><cop>Philadelphia</cop><pub>IOP Publishing</pub><doi>10.3847/1538-4357/abe45f</doi><orcidid>https://orcid.org/0000-0003-0833-4075</orcidid><orcidid>https://orcid.org/0000-0002-3598-9643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-03, Vol.909 (2), p.206
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2503934844
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Astrophysics
Building codes
Charged particles
Coagulation
Computational fluid dynamics
Dust
Equations of motion
Extinction
Filaments
Fluid flow
Grain growth
Grain size
Grain size distribution
Graphite
Interstellar matter
Interstellar medium
Magnetohydrodynamics
Molecular clouds
Particle size
Particle size distribution
Silicates
title Dust Growth in Molecular Cloud Envelopes: A Numerical Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dust%20Growth%20in%20Molecular%20Cloud%20Envelopes:%20A%20Numerical%20Approach&rft.jtitle=The%20Astrophysical%20journal&rft.au=Beitia-Antero,%20Leire&rft.date=2021-03-01&rft.volume=909&rft.issue=2&rft.spage=206&rft.pages=206-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abe45f&rft_dat=%3Cproquest_cross%3E2503934844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503934844&rft_id=info:pmid/&rfr_iscdi=true