Controlling the Nonlinear Relaxation of Quantized Propagating Magnons in Nanodevices

Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-03, Vol.126 (9), p.097202, Article 097202
Hauptverfasser: Mohseni, M, Wang, Q, Heinz, B, Kewenig, M, Schneider, M, Kohl, F, Lägel, B, Dubs, C, Chumak, A V, Pirro, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 097202
container_title Physical review letters
container_volume 126
creator Mohseni, M
Wang, Q
Heinz, B
Kewenig, M
Schneider, M
Kohl, F
Lägel, B
Dubs, C
Chumak, A V
Pirro, P
description Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.
doi_str_mv 10.1103/PhysRevLett.126.097202
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503933430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503933430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-bb4aa49f3022a3fdf51d3448c715be17cbf146f6461564d135bf73c6257bd80a3</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhujEUT_Amni9fB0bVd2aYhfCSoSvG66rYWR0WK7EfHXWwMar85JzvO-J3kQGhIYEQL0Zrbah7neTXXbjkiajSAXKaQnqE9A5IkghJ2iPgAlSQ4geugihDUARHR8jnqUCg6Eiz5aTJxtvWua2i5xu9L4xdm4a-XxXDfqU7W1s9gZ_NYp29ZfusIz77ZqGQ8x8ayW1tmAa4tflHWV3tWlDpfozKgm6KvjHKD3-7vF5DGZvj48TW6nSck4bZOiYEqx3FBIU0VNZTipKGPjUhBeaCLKwhCWmYxlhGesIpQXRtAyS7koqjEoOkDXh96tdx-dDq1cu87b-FKmHGhOKaMQqexAld6F4LWRW19vlN9LAvJHpvwnU0ZD8iAzBofH-q7Y6Oov9muPfgMXUHOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503933430</pqid></control><display><type>article</type><title>Controlling the Nonlinear Relaxation of Quantized Propagating Magnons in Nanodevices</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mohseni, M ; Wang, Q ; Heinz, B ; Kewenig, M ; Schneider, M ; Kohl, F ; Lägel, B ; Dubs, C ; Chumak, A V ; Pirro, P</creator><creatorcontrib>Mohseni, M ; Wang, Q ; Heinz, B ; Kewenig, M ; Schneider, M ; Kohl, F ; Lägel, B ; Dubs, C ; Chumak, A V ; Pirro, P</creatorcontrib><description>Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.126.097202</identifier><identifier>PMID: 33750157</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Bose-Einstein condensates ; Damping ; Intermodal ; Light scattering ; Magnons ; Nanotechnology devices ; Nonlinear control ; Wave propagation ; Yttrium ; Yttrium-iron garnet</subject><ispartof>Physical review letters, 2021-03, Vol.126 (9), p.097202, Article 097202</ispartof><rights>Copyright American Physical Society Mar 5, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-bb4aa49f3022a3fdf51d3448c715be17cbf146f6461564d135bf73c6257bd80a3</citedby><cites>FETCH-LOGICAL-c453t-bb4aa49f3022a3fdf51d3448c715be17cbf146f6461564d135bf73c6257bd80a3</cites><orcidid>0000-0002-2071-1622 ; 0000-0002-6540-6218 ; 0000-0002-0162-1007 ; 0000-0001-6760-929X ; 0000-0001-5515-0848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33750157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohseni, M</creatorcontrib><creatorcontrib>Wang, Q</creatorcontrib><creatorcontrib>Heinz, B</creatorcontrib><creatorcontrib>Kewenig, M</creatorcontrib><creatorcontrib>Schneider, M</creatorcontrib><creatorcontrib>Kohl, F</creatorcontrib><creatorcontrib>Lägel, B</creatorcontrib><creatorcontrib>Dubs, C</creatorcontrib><creatorcontrib>Chumak, A V</creatorcontrib><creatorcontrib>Pirro, P</creatorcontrib><title>Controlling the Nonlinear Relaxation of Quantized Propagating Magnons in Nanodevices</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.</description><subject>Bose-Einstein condensates</subject><subject>Damping</subject><subject>Intermodal</subject><subject>Light scattering</subject><subject>Magnons</subject><subject>Nanotechnology devices</subject><subject>Nonlinear control</subject><subject>Wave propagation</subject><subject>Yttrium</subject><subject>Yttrium-iron garnet</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkF1PwjAUhhujEUT_Amni9fB0bVd2aYhfCSoSvG66rYWR0WK7EfHXWwMar85JzvO-J3kQGhIYEQL0Zrbah7neTXXbjkiajSAXKaQnqE9A5IkghJ2iPgAlSQ4geugihDUARHR8jnqUCg6Eiz5aTJxtvWua2i5xu9L4xdm4a-XxXDfqU7W1s9gZ_NYp29ZfusIz77ZqGQ8x8ayW1tmAa4tflHWV3tWlDpfozKgm6KvjHKD3-7vF5DGZvj48TW6nSck4bZOiYEqx3FBIU0VNZTipKGPjUhBeaCLKwhCWmYxlhGesIpQXRtAyS7koqjEoOkDXh96tdx-dDq1cu87b-FKmHGhOKaMQqexAld6F4LWRW19vlN9LAvJHpvwnU0ZD8iAzBofH-q7Y6Oov9muPfgMXUHOU</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Mohseni, M</creator><creator>Wang, Q</creator><creator>Heinz, B</creator><creator>Kewenig, M</creator><creator>Schneider, M</creator><creator>Kohl, F</creator><creator>Lägel, B</creator><creator>Dubs, C</creator><creator>Chumak, A V</creator><creator>Pirro, P</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2071-1622</orcidid><orcidid>https://orcid.org/0000-0002-6540-6218</orcidid><orcidid>https://orcid.org/0000-0002-0162-1007</orcidid><orcidid>https://orcid.org/0000-0001-6760-929X</orcidid><orcidid>https://orcid.org/0000-0001-5515-0848</orcidid></search><sort><creationdate>20210305</creationdate><title>Controlling the Nonlinear Relaxation of Quantized Propagating Magnons in Nanodevices</title><author>Mohseni, M ; Wang, Q ; Heinz, B ; Kewenig, M ; Schneider, M ; Kohl, F ; Lägel, B ; Dubs, C ; Chumak, A V ; Pirro, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-bb4aa49f3022a3fdf51d3448c715be17cbf146f6461564d135bf73c6257bd80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bose-Einstein condensates</topic><topic>Damping</topic><topic>Intermodal</topic><topic>Light scattering</topic><topic>Magnons</topic><topic>Nanotechnology devices</topic><topic>Nonlinear control</topic><topic>Wave propagation</topic><topic>Yttrium</topic><topic>Yttrium-iron garnet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohseni, M</creatorcontrib><creatorcontrib>Wang, Q</creatorcontrib><creatorcontrib>Heinz, B</creatorcontrib><creatorcontrib>Kewenig, M</creatorcontrib><creatorcontrib>Schneider, M</creatorcontrib><creatorcontrib>Kohl, F</creatorcontrib><creatorcontrib>Lägel, B</creatorcontrib><creatorcontrib>Dubs, C</creatorcontrib><creatorcontrib>Chumak, A V</creatorcontrib><creatorcontrib>Pirro, P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohseni, M</au><au>Wang, Q</au><au>Heinz, B</au><au>Kewenig, M</au><au>Schneider, M</au><au>Kohl, F</au><au>Lägel, B</au><au>Dubs, C</au><au>Chumak, A V</au><au>Pirro, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Nonlinear Relaxation of Quantized Propagating Magnons in Nanodevices</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>126</volume><issue>9</issue><spage>097202</spage><pages>097202-</pages><artnum>097202</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33750157</pmid><doi>10.1103/PhysRevLett.126.097202</doi><orcidid>https://orcid.org/0000-0002-2071-1622</orcidid><orcidid>https://orcid.org/0000-0002-6540-6218</orcidid><orcidid>https://orcid.org/0000-0002-0162-1007</orcidid><orcidid>https://orcid.org/0000-0001-6760-929X</orcidid><orcidid>https://orcid.org/0000-0001-5515-0848</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-03, Vol.126 (9), p.097202, Article 097202
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_journals_2503933430
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bose-Einstein condensates
Damping
Intermodal
Light scattering
Magnons
Nanotechnology devices
Nonlinear control
Wave propagation
Yttrium
Yttrium-iron garnet
title Controlling the Nonlinear Relaxation of Quantized Propagating Magnons in Nanodevices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Nonlinear%20Relaxation%20of%20Quantized%20Propagating%20Magnons%20in%20Nanodevices&rft.jtitle=Physical%20review%20letters&rft.au=Mohseni,%20M&rft.date=2021-03-05&rft.volume=126&rft.issue=9&rft.spage=097202&rft.pages=097202-&rft.artnum=097202&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.126.097202&rft_dat=%3Cproquest_cross%3E2503933430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503933430&rft_id=info:pmid/33750157&rfr_iscdi=true