WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat

Crop model parameter calibration is an important work of extending point-scale crop model to regional application.Using K-means method with the main meteorological factors affecting the growth and yield formation of winter wheat obtained from 113 meteorological stations from 1981 to 2010 as zoning i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ying yong qi xiang xue bao = Quarterly journal of applied meteorology 2021-01, Vol.32 (1), p.38-51
Hauptverfasser: Li, Ying, Zhao, Guoqiang, Chen, Huailiang, Yu, Weidong, Su, Wei, Cheng, Yaoda
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 38
container_title Ying yong qi xiang xue bao = Quarterly journal of applied meteorology
container_volume 32
creator Li, Ying
Zhao, Guoqiang
Chen, Huailiang
Yu, Weidong
Su, Wei
Cheng, Yaoda
description Crop model parameter calibration is an important work of extending point-scale crop model to regional application.Using K-means method with the main meteorological factors affecting the growth and yield formation of winter wheat obtained from 113 meteorological stations from 1981 to 2010 as zoning indicators,Henan Province is divided into five different agro-climatic ecological zones and the cumulative temperature parameters are calculated for each zone.Based on the observations during 2013-2017,nine sensitive parameters are obtained by using Sobol global sensitivity analysis method to analyze and select crop parameters with total sensitivity index greater than 0.01.The sensitive parameters selected from different agroclimatic ecological zones of different winter wheat varieties are highly consistent.A cost function is constructed with yield and leaf area index(LAI),and each partition is calibrated for sensitive parameters using Differential Evolution Markov Chain method.The results show that the simulated leaf area index in the different agro-climatic ecological zones are in good agreement with the observed values,the root mean square error(RMSE) using the posterior mean value of regional parameters adjustment to simulate the LAI of key growth periods is 0.655,which is obviously higher than that of using default parameters or using the same set of optimized parameters in the whole study area.Results show that the WOFOST model based on agro-climatic division can accurately simulate the growth process of crops.In terms of yield estimation accuracy,the yield simulation accuracy of regional parameter adjustment is also significantly improved.The best accuracy of simulated yield is achieved by using the posterior mean of regional parameters and RMSE is 672.016 kg·hm-2,70.55 % reduction than the yield simulation error when using the default parameters,or 48.75% reduction than the yield simulation error when the same set of optimized parameters(posterior mean) are used for the entire area.The method takes advantage of the knowledge of agroclimatology with the scientific and efficient Differential Evolution Markov Chain optimization algorithm to provide a scientific and theoretical basis for the application of crop models and optimization of regional model parameters through rational and efficient zonal calibration of the study area.
doi_str_mv 10.11898/1001-7313.20210104
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2503931100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_85515a2c733d4a6c99960fd05edb9264</doaj_id><sourcerecordid>2503931100</sourcerecordid><originalsourceid>FETCH-LOGICAL-d940-226f7af192a73bd83af546ce8b406e7f54bdd19f43da1b0e77d1e7c300349d523</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhnvQRIL8Ai9NPC9OP7bdHhFFSTAYJeG4md12sWSh2F1M_PcWMZ5m5p3MkydDyA2DMWOFKe4YAMu0YGLMgTNgIC_I4D-8IqOu8xUAFIrzQg_I23o5W76v6EuwrqWvGHHnehfpFFtfRex92NN77JylqZlsYsjq1u9SXtMH_-W70z40dO33p6v1h8P-mlw22HZu9FeHZDV7XE2fs8XyaT6dLDJrJGScq0ZjwwxHLSpbCGxyqWpXVBKU02morGWmkcIiq8BpbZnTtQAQ0ticiyGZn7E24LY8xGQVv8uAvvwNQtyUGJNn68oiz1mOvNZCWImqNsYoaCzkzlaGK5lYt2fWIYbPo-v6chuOcZ_sS56DMIKlF4of2pFn6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503931100</pqid></control><display><type>article</type><title>WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat</title><source>DOAJ Directory of Open Access Journals</source><creator>Li, Ying ; Zhao, Guoqiang ; Chen, Huailiang ; Yu, Weidong ; Su, Wei ; Cheng, Yaoda</creator><creatorcontrib>Li, Ying ; Zhao, Guoqiang ; Chen, Huailiang ; Yu, Weidong ; Su, Wei ; Cheng, Yaoda</creatorcontrib><description>Crop model parameter calibration is an important work of extending point-scale crop model to regional application.Using K-means method with the main meteorological factors affecting the growth and yield formation of winter wheat obtained from 113 meteorological stations from 1981 to 2010 as zoning indicators,Henan Province is divided into five different agro-climatic ecological zones and the cumulative temperature parameters are calculated for each zone.Based on the observations during 2013-2017,nine sensitive parameters are obtained by using Sobol global sensitivity analysis method to analyze and select crop parameters with total sensitivity index greater than 0.01.The sensitive parameters selected from different agroclimatic ecological zones of different winter wheat varieties are highly consistent.A cost function is constructed with yield and leaf area index(LAI),and each partition is calibrated for sensitive parameters using Differential Evolution Markov Chain method.The results show that the simulated leaf area index in the different agro-climatic ecological zones are in good agreement with the observed values,the root mean square error(RMSE) using the posterior mean value of regional parameters adjustment to simulate the LAI of key growth periods is 0.655,which is obviously higher than that of using default parameters or using the same set of optimized parameters in the whole study area.Results show that the WOFOST model based on agro-climatic division can accurately simulate the growth process of crops.In terms of yield estimation accuracy,the yield simulation accuracy of regional parameter adjustment is also significantly improved.The best accuracy of simulated yield is achieved by using the posterior mean of regional parameters and RMSE is 672.016 kg·hm-2,70.55 % reduction than the yield simulation error when using the default parameters,or 48.75% reduction than the yield simulation error when the same set of optimized parameters(posterior mean) are used for the entire area.The method takes advantage of the knowledge of agroclimatology with the scientific and efficient Differential Evolution Markov Chain optimization algorithm to provide a scientific and theoretical basis for the application of crop models and optimization of regional model parameters through rational and efficient zonal calibration of the study area.</description><identifier>ISSN: 1001-7313</identifier><identifier>DOI: 10.11898/1001-7313.20210104</identifier><language>chi ; eng</language><publisher>Beijing: China Meteorological Press</publisher><subject>Accuracy ; Agricultural production ; agro-climatic zoning ; Agroclimatology ; Calibration ; Cereal crops ; Climate models ; Climatic indexes ; Climatology ; Cost function ; Crop yield ; Crops ; Division ; Ecology ; Estimation accuracy ; Evolution ; Evolutionary algorithms ; Evolutionary computation ; global sensitivity analysis ; Growth ; Leaf area ; Leaf area index ; Markov analysis ; Markov chains ; Mathematical models ; Optimization ; parameter calibration ; Parameter sensitivity ; Parameters ; Root-mean-square errors ; Sensitivity analysis ; Simulation ; Triticum aestivum ; Weather stations ; Wheat ; Winter wheat ; Yield</subject><ispartof>Ying yong qi xiang xue bao = Quarterly journal of applied meteorology, 2021-01, Vol.32 (1), p.38-51</ispartof><rights>Copyright China Meteorological Press 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Zhao, Guoqiang</creatorcontrib><creatorcontrib>Chen, Huailiang</creatorcontrib><creatorcontrib>Yu, Weidong</creatorcontrib><creatorcontrib>Su, Wei</creatorcontrib><creatorcontrib>Cheng, Yaoda</creatorcontrib><title>WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat</title><title>Ying yong qi xiang xue bao = Quarterly journal of applied meteorology</title><description>Crop model parameter calibration is an important work of extending point-scale crop model to regional application.Using K-means method with the main meteorological factors affecting the growth and yield formation of winter wheat obtained from 113 meteorological stations from 1981 to 2010 as zoning indicators,Henan Province is divided into five different agro-climatic ecological zones and the cumulative temperature parameters are calculated for each zone.Based on the observations during 2013-2017,nine sensitive parameters are obtained by using Sobol global sensitivity analysis method to analyze and select crop parameters with total sensitivity index greater than 0.01.The sensitive parameters selected from different agroclimatic ecological zones of different winter wheat varieties are highly consistent.A cost function is constructed with yield and leaf area index(LAI),and each partition is calibrated for sensitive parameters using Differential Evolution Markov Chain method.The results show that the simulated leaf area index in the different agro-climatic ecological zones are in good agreement with the observed values,the root mean square error(RMSE) using the posterior mean value of regional parameters adjustment to simulate the LAI of key growth periods is 0.655,which is obviously higher than that of using default parameters or using the same set of optimized parameters in the whole study area.Results show that the WOFOST model based on agro-climatic division can accurately simulate the growth process of crops.In terms of yield estimation accuracy,the yield simulation accuracy of regional parameter adjustment is also significantly improved.The best accuracy of simulated yield is achieved by using the posterior mean of regional parameters and RMSE is 672.016 kg·hm-2,70.55 % reduction than the yield simulation error when using the default parameters,or 48.75% reduction than the yield simulation error when the same set of optimized parameters(posterior mean) are used for the entire area.The method takes advantage of the knowledge of agroclimatology with the scientific and efficient Differential Evolution Markov Chain optimization algorithm to provide a scientific and theoretical basis for the application of crop models and optimization of regional model parameters through rational and efficient zonal calibration of the study area.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>agro-climatic zoning</subject><subject>Agroclimatology</subject><subject>Calibration</subject><subject>Cereal crops</subject><subject>Climate models</subject><subject>Climatic indexes</subject><subject>Climatology</subject><subject>Cost function</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Division</subject><subject>Ecology</subject><subject>Estimation accuracy</subject><subject>Evolution</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>global sensitivity analysis</subject><subject>Growth</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>parameter calibration</subject><subject>Parameter sensitivity</subject><subject>Parameters</subject><subject>Root-mean-square errors</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Triticum aestivum</subject><subject>Weather stations</subject><subject>Wheat</subject><subject>Winter wheat</subject><subject>Yield</subject><issn>1001-7313</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kE1PAjEQhnvQRIL8Ai9NPC9OP7bdHhFFSTAYJeG4md12sWSh2F1M_PcWMZ5m5p3MkydDyA2DMWOFKe4YAMu0YGLMgTNgIC_I4D-8IqOu8xUAFIrzQg_I23o5W76v6EuwrqWvGHHnehfpFFtfRex92NN77JylqZlsYsjq1u9SXtMH_-W70z40dO33p6v1h8P-mlw22HZu9FeHZDV7XE2fs8XyaT6dLDJrJGScq0ZjwwxHLSpbCGxyqWpXVBKU02morGWmkcIiq8BpbZnTtQAQ0ticiyGZn7E24LY8xGQVv8uAvvwNQtyUGJNn68oiz1mOvNZCWImqNsYoaCzkzlaGK5lYt2fWIYbPo-v6chuOcZ_sS56DMIKlF4of2pFn6A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Li, Ying</creator><creator>Zhao, Guoqiang</creator><creator>Chen, Huailiang</creator><creator>Yu, Weidong</creator><creator>Su, Wei</creator><creator>Cheng, Yaoda</creator><general>China Meteorological Press</general><general>Editorial Office of Journal of Applied Meteorological Science</general><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>KL.</scope><scope>L.G</scope><scope>DOA</scope></search><sort><creationdate>20210101</creationdate><title>WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat</title><author>Li, Ying ; Zhao, Guoqiang ; Chen, Huailiang ; Yu, Weidong ; Su, Wei ; Cheng, Yaoda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d940-226f7af192a73bd83af546ce8b406e7f54bdd19f43da1b0e77d1e7c300349d523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>agro-climatic zoning</topic><topic>Agroclimatology</topic><topic>Calibration</topic><topic>Cereal crops</topic><topic>Climate models</topic><topic>Climatic indexes</topic><topic>Climatology</topic><topic>Cost function</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Division</topic><topic>Ecology</topic><topic>Estimation accuracy</topic><topic>Evolution</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>global sensitivity analysis</topic><topic>Growth</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>parameter calibration</topic><topic>Parameter sensitivity</topic><topic>Parameters</topic><topic>Root-mean-square errors</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Triticum aestivum</topic><topic>Weather stations</topic><topic>Wheat</topic><topic>Winter wheat</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Zhao, Guoqiang</creatorcontrib><creatorcontrib>Chen, Huailiang</creatorcontrib><creatorcontrib>Yu, Weidong</creatorcontrib><creatorcontrib>Su, Wei</creatorcontrib><creatorcontrib>Cheng, Yaoda</creatorcontrib><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Ying yong qi xiang xue bao = Quarterly journal of applied meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ying</au><au>Zhao, Guoqiang</au><au>Chen, Huailiang</au><au>Yu, Weidong</au><au>Su, Wei</au><au>Cheng, Yaoda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat</atitle><jtitle>Ying yong qi xiang xue bao = Quarterly journal of applied meteorology</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>32</volume><issue>1</issue><spage>38</spage><epage>51</epage><pages>38-51</pages><issn>1001-7313</issn><abstract>Crop model parameter calibration is an important work of extending point-scale crop model to regional application.Using K-means method with the main meteorological factors affecting the growth and yield formation of winter wheat obtained from 113 meteorological stations from 1981 to 2010 as zoning indicators,Henan Province is divided into five different agro-climatic ecological zones and the cumulative temperature parameters are calculated for each zone.Based on the observations during 2013-2017,nine sensitive parameters are obtained by using Sobol global sensitivity analysis method to analyze and select crop parameters with total sensitivity index greater than 0.01.The sensitive parameters selected from different agroclimatic ecological zones of different winter wheat varieties are highly consistent.A cost function is constructed with yield and leaf area index(LAI),and each partition is calibrated for sensitive parameters using Differential Evolution Markov Chain method.The results show that the simulated leaf area index in the different agro-climatic ecological zones are in good agreement with the observed values,the root mean square error(RMSE) using the posterior mean value of regional parameters adjustment to simulate the LAI of key growth periods is 0.655,which is obviously higher than that of using default parameters or using the same set of optimized parameters in the whole study area.Results show that the WOFOST model based on agro-climatic division can accurately simulate the growth process of crops.In terms of yield estimation accuracy,the yield simulation accuracy of regional parameter adjustment is also significantly improved.The best accuracy of simulated yield is achieved by using the posterior mean of regional parameters and RMSE is 672.016 kg·hm-2,70.55 % reduction than the yield simulation error when using the default parameters,or 48.75% reduction than the yield simulation error when the same set of optimized parameters(posterior mean) are used for the entire area.The method takes advantage of the knowledge of agroclimatology with the scientific and efficient Differential Evolution Markov Chain optimization algorithm to provide a scientific and theoretical basis for the application of crop models and optimization of regional model parameters through rational and efficient zonal calibration of the study area.</abstract><cop>Beijing</cop><pub>China Meteorological Press</pub><doi>10.11898/1001-7313.20210104</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-7313
ispartof Ying yong qi xiang xue bao = Quarterly journal of applied meteorology, 2021-01, Vol.32 (1), p.38-51
issn 1001-7313
language chi ; eng
recordid cdi_proquest_journals_2503931100
source DOAJ Directory of Open Access Journals
subjects Accuracy
Agricultural production
agro-climatic zoning
Agroclimatology
Calibration
Cereal crops
Climate models
Climatic indexes
Climatology
Cost function
Crop yield
Crops
Division
Ecology
Estimation accuracy
Evolution
Evolutionary algorithms
Evolutionary computation
global sensitivity analysis
Growth
Leaf area
Leaf area index
Markov analysis
Markov chains
Mathematical models
Optimization
parameter calibration
Parameter sensitivity
Parameters
Root-mean-square errors
Sensitivity analysis
Simulation
Triticum aestivum
Weather stations
Wheat
Winter wheat
Yield
title WOFOST Model Parameter Calibration Based on Agro-climatic Division of Winter Wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WOFOST%20Model%20Parameter%20Calibration%20Based%20on%20Agro-climatic%20Division%20of%20Winter%20Wheat&rft.jtitle=Ying%20yong%20qi%20xiang%20xue%20bao%20=%20Quarterly%20journal%20of%20applied%20meteorology&rft.au=Li,%20Ying&rft.date=2021-01-01&rft.volume=32&rft.issue=1&rft.spage=38&rft.epage=51&rft.pages=38-51&rft.issn=1001-7313&rft_id=info:doi/10.11898/1001-7313.20210104&rft_dat=%3Cproquest_doaj_%3E2503931100%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503931100&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_85515a2c733d4a6c99960fd05edb9264&rfr_iscdi=true