Modified ball-type automatic balancer for rotating shafts: Analysis and experiment

The automatic balancer is a passive device with masses that are free to move in a shaft-concentric race. At supercritical shaft speeds, the masses automatically re-align to counteract imbalance and reduce vibration. This phenomenon is caused by the phase shift of the shaft bending response that occu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2021-03, Vol.496, p.115927, Article 115927
Hauptverfasser: Haidar, Ahmad M., Palacios, Jose L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115927
container_title Journal of sound and vibration
container_volume 496
creator Haidar, Ahmad M.
Palacios, Jose L.
description The automatic balancer is a passive device with masses that are free to move in a shaft-concentric race. At supercritical shaft speeds, the masses automatically re-align to counteract imbalance and reduce vibration. This phenomenon is caused by the phase shift of the shaft bending response that occurs through resonance. The conventional automatic balancer (dual-ball, single race) reduces or eliminates vibration at supercritical speeds given a frictionless race, but increases vibration at subcritical and critical speed transitions. In this work, a fully passive, partitioned-track, automatic balancer with centrifugal clamps is proposed to improve performance during suboptimal operation. Both analysis and experiment are presented to support the novel design. Experimentally, a partitioned-race balancer reduced vibration by 7% during spin up, 83% at supercritical steadystate, and 65% during spin down – a complete improvement over conventional balancers. Model predictions are within 14% of experimental data at steadystate. Additionally, the use of centrifugal clamps reduced vibrations by up to 95% during critical speed transitions in analysis. The vibration reduction capability presented in this research outside of supercritical steadystate operation is a necessary advancement for the practical application of passive balancing devices.
doi_str_mv 10.1016/j.jsv.2020.115927
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503930011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X20307665</els_id><sourcerecordid>2503930011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c7a19f6077c51ff8dd95a8d5ab83d5d2d1afef7140254b60095f5014a4bcdc4c3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C7geupJJpmLrkrxBhVBFNyFTC6aYTozJmmxb2_KuHZ1OIf_P3x8CF0SWBAgxXW7aMNuQYGmnfCalkdoRqDmWcWL6hjNACjNWAEfp-gshBYAapazGXp9HrSzzmjcyK7L4n40WG7jsJHRqcNN9sp4bAeP_RDTsf_E4UvaGG7wspfdPriAZa-x-RmNdxvTx3N0YmUXzMXfnKP3-7u31WO2fnl4Wi3Xmcopj5kqJaltAWWpOLG20rrmstJcNlWuuaaaSGtsSRhQzpoiAXPLgTDJGqUVU_kcXU1_Rz98b02Ioh22PjEFQTnkdQ5ASEqRKaX8EII3VowJU_q9ICAO6kQrkjpxUCcmdalzO3VMwt8540VQziQR2nmjotCD-6f9CzLyd2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503930011</pqid></control><display><type>article</type><title>Modified ball-type automatic balancer for rotating shafts: Analysis and experiment</title><source>Access via ScienceDirect (Elsevier)</source><creator>Haidar, Ahmad M. ; Palacios, Jose L.</creator><creatorcontrib>Haidar, Ahmad M. ; Palacios, Jose L.</creatorcontrib><description>The automatic balancer is a passive device with masses that are free to move in a shaft-concentric race. At supercritical shaft speeds, the masses automatically re-align to counteract imbalance and reduce vibration. This phenomenon is caused by the phase shift of the shaft bending response that occurs through resonance. The conventional automatic balancer (dual-ball, single race) reduces or eliminates vibration at supercritical speeds given a frictionless race, but increases vibration at subcritical and critical speed transitions. In this work, a fully passive, partitioned-track, automatic balancer with centrifugal clamps is proposed to improve performance during suboptimal operation. Both analysis and experiment are presented to support the novel design. Experimentally, a partitioned-race balancer reduced vibration by 7% during spin up, 83% at supercritical steadystate, and 65% during spin down – a complete improvement over conventional balancers. Model predictions are within 14% of experimental data at steadystate. Additionally, the use of centrifugal clamps reduced vibrations by up to 95% during critical speed transitions in analysis. The vibration reduction capability presented in this research outside of supercritical steadystate operation is a necessary advancement for the practical application of passive balancing devices.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2020.115927</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Clamps ; Passive balancing ; Race ; Rotating shafts ; Structural dynamics ; Supercritical processes ; Vibration ; Vibration analysis ; Vibration control</subject><ispartof>Journal of sound and vibration, 2021-03, Vol.496, p.115927, Article 115927</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Mar 31, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c7a19f6077c51ff8dd95a8d5ab83d5d2d1afef7140254b60095f5014a4bcdc4c3</citedby><cites>FETCH-LOGICAL-c325t-c7a19f6077c51ff8dd95a8d5ab83d5d2d1afef7140254b60095f5014a4bcdc4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2020.115927$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Haidar, Ahmad M.</creatorcontrib><creatorcontrib>Palacios, Jose L.</creatorcontrib><title>Modified ball-type automatic balancer for rotating shafts: Analysis and experiment</title><title>Journal of sound and vibration</title><description>The automatic balancer is a passive device with masses that are free to move in a shaft-concentric race. At supercritical shaft speeds, the masses automatically re-align to counteract imbalance and reduce vibration. This phenomenon is caused by the phase shift of the shaft bending response that occurs through resonance. The conventional automatic balancer (dual-ball, single race) reduces or eliminates vibration at supercritical speeds given a frictionless race, but increases vibration at subcritical and critical speed transitions. In this work, a fully passive, partitioned-track, automatic balancer with centrifugal clamps is proposed to improve performance during suboptimal operation. Both analysis and experiment are presented to support the novel design. Experimentally, a partitioned-race balancer reduced vibration by 7% during spin up, 83% at supercritical steadystate, and 65% during spin down – a complete improvement over conventional balancers. Model predictions are within 14% of experimental data at steadystate. Additionally, the use of centrifugal clamps reduced vibrations by up to 95% during critical speed transitions in analysis. The vibration reduction capability presented in this research outside of supercritical steadystate operation is a necessary advancement for the practical application of passive balancing devices.</description><subject>Clamps</subject><subject>Passive balancing</subject><subject>Race</subject><subject>Rotating shafts</subject><subject>Structural dynamics</subject><subject>Supercritical processes</subject><subject>Vibration</subject><subject>Vibration analysis</subject><subject>Vibration control</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C7geupJJpmLrkrxBhVBFNyFTC6aYTozJmmxb2_KuHZ1OIf_P3x8CF0SWBAgxXW7aMNuQYGmnfCalkdoRqDmWcWL6hjNACjNWAEfp-gshBYAapazGXp9HrSzzmjcyK7L4n40WG7jsJHRqcNN9sp4bAeP_RDTsf_E4UvaGG7wspfdPriAZa-x-RmNdxvTx3N0YmUXzMXfnKP3-7u31WO2fnl4Wi3Xmcopj5kqJaltAWWpOLG20rrmstJcNlWuuaaaSGtsSRhQzpoiAXPLgTDJGqUVU_kcXU1_Rz98b02Ioh22PjEFQTnkdQ5ASEqRKaX8EII3VowJU_q9ICAO6kQrkjpxUCcmdalzO3VMwt8540VQziQR2nmjotCD-6f9CzLyd2g</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Haidar, Ahmad M.</creator><creator>Palacios, Jose L.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20210331</creationdate><title>Modified ball-type automatic balancer for rotating shafts: Analysis and experiment</title><author>Haidar, Ahmad M. ; Palacios, Jose L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c7a19f6077c51ff8dd95a8d5ab83d5d2d1afef7140254b60095f5014a4bcdc4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clamps</topic><topic>Passive balancing</topic><topic>Race</topic><topic>Rotating shafts</topic><topic>Structural dynamics</topic><topic>Supercritical processes</topic><topic>Vibration</topic><topic>Vibration analysis</topic><topic>Vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haidar, Ahmad M.</creatorcontrib><creatorcontrib>Palacios, Jose L.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haidar, Ahmad M.</au><au>Palacios, Jose L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified ball-type automatic balancer for rotating shafts: Analysis and experiment</atitle><jtitle>Journal of sound and vibration</jtitle><date>2021-03-31</date><risdate>2021</risdate><volume>496</volume><spage>115927</spage><pages>115927-</pages><artnum>115927</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>The automatic balancer is a passive device with masses that are free to move in a shaft-concentric race. At supercritical shaft speeds, the masses automatically re-align to counteract imbalance and reduce vibration. This phenomenon is caused by the phase shift of the shaft bending response that occurs through resonance. The conventional automatic balancer (dual-ball, single race) reduces or eliminates vibration at supercritical speeds given a frictionless race, but increases vibration at subcritical and critical speed transitions. In this work, a fully passive, partitioned-track, automatic balancer with centrifugal clamps is proposed to improve performance during suboptimal operation. Both analysis and experiment are presented to support the novel design. Experimentally, a partitioned-race balancer reduced vibration by 7% during spin up, 83% at supercritical steadystate, and 65% during spin down – a complete improvement over conventional balancers. Model predictions are within 14% of experimental data at steadystate. Additionally, the use of centrifugal clamps reduced vibrations by up to 95% during critical speed transitions in analysis. The vibration reduction capability presented in this research outside of supercritical steadystate operation is a necessary advancement for the practical application of passive balancing devices.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2020.115927</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2021-03, Vol.496, p.115927, Article 115927
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2503930011
source Access via ScienceDirect (Elsevier)
subjects Clamps
Passive balancing
Race
Rotating shafts
Structural dynamics
Supercritical processes
Vibration
Vibration analysis
Vibration control
title Modified ball-type automatic balancer for rotating shafts: Analysis and experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20ball-type%20automatic%20balancer%20for%20rotating%20shafts:%20Analysis%20and%20experiment&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Haidar,%20Ahmad%20M.&rft.date=2021-03-31&rft.volume=496&rft.spage=115927&rft.pages=115927-&rft.artnum=115927&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2020.115927&rft_dat=%3Cproquest_cross%3E2503930011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503930011&rft_id=info:pmid/&rft_els_id=S0022460X20307665&rfr_iscdi=true