Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol

Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (11), p.6790-6796
Hauptverfasser: Qi, Feixuanyu, Liu, Kang, Ma, De-Kun, Cai, Fangfang, Liu, Min, Xu, Quanlong, Chen, Wei, Qi, Chenze, Yang, Dongpeng, Huang, Shaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6796
container_issue 11
container_start_page 6790
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Qi, Feixuanyu
Liu, Kang
Ma, De-Kun
Cai, Fangfang
Liu, Min
Xu, Quanlong
Chen, Wei
Qi, Chenze
Yang, Dongpeng
Huang, Shaoming
description Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO2 reduction reaction (CO2RR) toward ethanol. As a result, 50% faradaic efficiency (FE) for ethanol was achieved over the obtained electrocatalyst at only -0.60 V versus the reversible hydrogen electrode (RHE) in CO2-saturated 0.5 M KHCO3 aqueous solution, which ranks as the best electrocatalysts for the CO2RR to ethanol. The experimental results and theoretical calculations showed that Mo and Ti dual active sites formed on the interfaces of TiO2 and MoS2 could adjust CO binding energy and promote the CO-CO coupling reaction and its subsequent transformation. A new regulatory mechanism of the CO coupling reaction and the possible reaction path were proposed based on experimental results and density functional theory (DFT) calculations.
doi_str_mv 10.1039/d0ta11457j
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2503927342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503927342</sourcerecordid><originalsourceid>FETCH-LOGICAL-g150t-f9c2aceadc59b31335d53da109387727465e09b7542bbca33b346e9bd1c8c8b13</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EElVhwxdYYokKfsRJvEThKRV1AayrsTNpXIW4OA4oH8L_YsRjjTdzF1dn5DOEnHB2zpnUFzWLwHmmiu0emQmm2KLIdL7_l8vykBwPw5alVzKWaz0jH1cjdBRsdG9IBxdxoA2Y4CxErGlsgx83LYXoX5ylHUwYaI07n5rO99Q39MmtBE3xwT8K2kPvhxYxUggBpsTygbZu03YTxaZx1mEfKXZoY_AB69H-YqpEiZ5ibBOiOyIHDXQDHv_MOXm-uX6q7hbL1e19dblcbLhicdFoK8Ai1FZpI7mUqlayBs60LItCFFmukGlTqEwYY0FKI7Mctam5LW1puJyT02_uLvjXEYe43vox9GnlWqikVBQyE6l19t16R-Ob4esTFte74F4gTOskM5ci2VQppTvMSfn_duUifCmo_NhH-QnE2IsH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503927342</pqid></control><display><type>article</type><title>Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol</title><source>Royal Society Of Chemistry Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Qi, Feixuanyu ; Liu, Kang ; Ma, De-Kun ; Cai, Fangfang ; Liu, Min ; Xu, Quanlong ; Chen, Wei ; Qi, Chenze ; Yang, Dongpeng ; Huang, Shaoming</creator><creatorcontrib>Qi, Feixuanyu ; Liu, Kang ; Ma, De-Kun ; Cai, Fangfang ; Liu, Min ; Xu, Quanlong ; Chen, Wei ; Qi, Chenze ; Yang, Dongpeng ; Huang, Shaoming</creatorcontrib><description>Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO2 reduction reaction (CO2RR) toward ethanol. As a result, 50% faradaic efficiency (FE) for ethanol was achieved over the obtained electrocatalyst at only -0.60 V versus the reversible hydrogen electrode (RHE) in CO2-saturated 0.5 M KHCO3 aqueous solution, which ranks as the best electrocatalysts for the CO2RR to ethanol. The experimental results and theoretical calculations showed that Mo and Ti dual active sites formed on the interfaces of TiO2 and MoS2 could adjust CO binding energy and promote the CO-CO coupling reaction and its subsequent transformation. A new regulatory mechanism of the CO coupling reaction and the possible reaction path were proposed based on experimental results and density functional theory (DFT) calculations.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta11457j</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Aqueous solutions ; Arrays ; Atomic layer epitaxy ; Carbon dioxide ; Chemical reduction ; Chemistry ; Chemistry, Physical ; Coupling ; Density functional theory ; Deposition ; Electrocatalysts ; Electrochemistry ; Energy &amp; Fuels ; Ethanol ; Interfaces ; Materials Science ; Materials Science, Multidisciplinary ; Mathematical analysis ; Molybdenum disulfide ; Nanosheets ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Raman spectra ; Raman spectroscopy ; Regulatory mechanisms (biology) ; Science &amp; Technology ; Technology ; Titanium ; Titanium dioxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (11), p.6790-6796</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>26</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000632069500010</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-g150t-f9c2aceadc59b31335d53da109387727465e09b7542bbca33b346e9bd1c8c8b13</cites><orcidid>0000-0002-9007-4817 ; 0000-0001-6958-150X ; 0000-0002-6950-5985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Qi, Feixuanyu</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Ma, De-Kun</creatorcontrib><creatorcontrib>Cai, Fangfang</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Xu, Quanlong</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Qi, Chenze</creatorcontrib><creatorcontrib>Yang, Dongpeng</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><title>Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><addtitle>J MATER CHEM A</addtitle><description>Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO2 reduction reaction (CO2RR) toward ethanol. As a result, 50% faradaic efficiency (FE) for ethanol was achieved over the obtained electrocatalyst at only -0.60 V versus the reversible hydrogen electrode (RHE) in CO2-saturated 0.5 M KHCO3 aqueous solution, which ranks as the best electrocatalysts for the CO2RR to ethanol. The experimental results and theoretical calculations showed that Mo and Ti dual active sites formed on the interfaces of TiO2 and MoS2 could adjust CO binding energy and promote the CO-CO coupling reaction and its subsequent transformation. A new regulatory mechanism of the CO coupling reaction and the possible reaction path were proposed based on experimental results and density functional theory (DFT) calculations.</description><subject>Aqueous solutions</subject><subject>Arrays</subject><subject>Atomic layer epitaxy</subject><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Coupling</subject><subject>Density functional theory</subject><subject>Deposition</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy &amp; Fuels</subject><subject>Ethanol</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mathematical analysis</subject><subject>Molybdenum disulfide</subject><subject>Nanosheets</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Regulatory mechanisms (biology)</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkctOwzAQRS0EElVhwxdYYokKfsRJvEThKRV1AayrsTNpXIW4OA4oH8L_YsRjjTdzF1dn5DOEnHB2zpnUFzWLwHmmiu0emQmm2KLIdL7_l8vykBwPw5alVzKWaz0jH1cjdBRsdG9IBxdxoA2Y4CxErGlsgx83LYXoX5ylHUwYaI07n5rO99Q39MmtBE3xwT8K2kPvhxYxUggBpsTygbZu03YTxaZx1mEfKXZoY_AB69H-YqpEiZ5ibBOiOyIHDXQDHv_MOXm-uX6q7hbL1e19dblcbLhicdFoK8Ai1FZpI7mUqlayBs60LItCFFmukGlTqEwYY0FKI7Mctam5LW1puJyT02_uLvjXEYe43vox9GnlWqikVBQyE6l19t16R-Ob4esTFte74F4gTOskM5ci2VQppTvMSfn_duUifCmo_NhH-QnE2IsH</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Qi, Feixuanyu</creator><creator>Liu, Kang</creator><creator>Ma, De-Kun</creator><creator>Cai, Fangfang</creator><creator>Liu, Min</creator><creator>Xu, Quanlong</creator><creator>Chen, Wei</creator><creator>Qi, Chenze</creator><creator>Yang, Dongpeng</creator><creator>Huang, Shaoming</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9007-4817</orcidid><orcidid>https://orcid.org/0000-0001-6958-150X</orcidid><orcidid>https://orcid.org/0000-0002-6950-5985</orcidid></search><sort><creationdate>20210101</creationdate><title>Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol</title><author>Qi, Feixuanyu ; Liu, Kang ; Ma, De-Kun ; Cai, Fangfang ; Liu, Min ; Xu, Quanlong ; Chen, Wei ; Qi, Chenze ; Yang, Dongpeng ; Huang, Shaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g150t-f9c2aceadc59b31335d53da109387727465e09b7542bbca33b346e9bd1c8c8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous solutions</topic><topic>Arrays</topic><topic>Atomic layer epitaxy</topic><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Coupling</topic><topic>Density functional theory</topic><topic>Deposition</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy &amp; Fuels</topic><topic>Ethanol</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mathematical analysis</topic><topic>Molybdenum disulfide</topic><topic>Nanosheets</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Regulatory mechanisms (biology)</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Feixuanyu</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Ma, De-Kun</creatorcontrib><creatorcontrib>Cai, Fangfang</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Xu, Quanlong</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Qi, Chenze</creatorcontrib><creatorcontrib>Yang, Dongpeng</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Feixuanyu</au><au>Liu, Kang</au><au>Ma, De-Kun</au><au>Cai, Fangfang</au><au>Liu, Min</au><au>Xu, Quanlong</au><au>Chen, Wei</au><au>Qi, Chenze</au><au>Yang, Dongpeng</au><au>Huang, Shaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><stitle>J MATER CHEM A</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>11</issue><spage>6790</spage><epage>6796</epage><pages>6790-6796</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO2 reduction reaction (CO2RR) toward ethanol. As a result, 50% faradaic efficiency (FE) for ethanol was achieved over the obtained electrocatalyst at only -0.60 V versus the reversible hydrogen electrode (RHE) in CO2-saturated 0.5 M KHCO3 aqueous solution, which ranks as the best electrocatalysts for the CO2RR to ethanol. The experimental results and theoretical calculations showed that Mo and Ti dual active sites formed on the interfaces of TiO2 and MoS2 could adjust CO binding energy and promote the CO-CO coupling reaction and its subsequent transformation. A new regulatory mechanism of the CO coupling reaction and the possible reaction path were proposed based on experimental results and density functional theory (DFT) calculations.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d0ta11457j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9007-4817</orcidid><orcidid>https://orcid.org/0000-0001-6958-150X</orcidid><orcidid>https://orcid.org/0000-0002-6950-5985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (11), p.6790-6796
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2503927342
source Royal Society Of Chemistry Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Aqueous solutions
Arrays
Atomic layer epitaxy
Carbon dioxide
Chemical reduction
Chemistry
Chemistry, Physical
Coupling
Density functional theory
Deposition
Electrocatalysts
Electrochemistry
Energy & Fuels
Ethanol
Interfaces
Materials Science
Materials Science, Multidisciplinary
Mathematical analysis
Molybdenum disulfide
Nanosheets
NMR
Nuclear magnetic resonance
Physical Sciences
Raman spectra
Raman spectroscopy
Regulatory mechanisms (biology)
Science & Technology
Technology
Titanium
Titanium dioxide
title Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20active%20sites%20fabricated%20through%20atomic%20layer%20deposition%20of%20TiO2%20on%20MoS2%20nanosheet%20arrays%20for%20highly%20efficient%20electroreduction%20of%20CO2%20to%20ethanol&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qi,%20Feixuanyu&rft.date=2021-01-01&rft.volume=9&rft.issue=11&rft.spage=6790&rft.epage=6796&rft.pages=6790-6796&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta11457j&rft_dat=%3Cproquest_webof%3E2503927342%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503927342&rft_id=info:pmid/&rfr_iscdi=true