Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol
Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (11), p.6790-6796 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6796 |
---|---|
container_issue | 11 |
container_start_page | 6790 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Qi, Feixuanyu Liu, Kang Ma, De-Kun Cai, Fangfang Liu, Min Xu, Quanlong Chen, Wei Qi, Chenze Yang, Dongpeng Huang, Shaoming |
description | Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO2 reduction reaction (CO2RR) toward ethanol. As a result, 50% faradaic efficiency (FE) for ethanol was achieved over the obtained electrocatalyst at only -0.60 V versus the reversible hydrogen electrode (RHE) in CO2-saturated 0.5 M KHCO3 aqueous solution, which ranks as the best electrocatalysts for the CO2RR to ethanol. The experimental results and theoretical calculations showed that Mo and Ti dual active sites formed on the interfaces of TiO2 and MoS2 could adjust CO binding energy and promote the CO-CO coupling reaction and its subsequent transformation. A new regulatory mechanism of the CO coupling reaction and the possible reaction path were proposed based on experimental results and density functional theory (DFT) calculations. |
doi_str_mv | 10.1039/d0ta11457j |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2503927342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503927342</sourcerecordid><originalsourceid>FETCH-LOGICAL-g150t-f9c2aceadc59b31335d53da109387727465e09b7542bbca33b346e9bd1c8c8b13</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EElVhwxdYYokKfsRJvEThKRV1AayrsTNpXIW4OA4oH8L_YsRjjTdzF1dn5DOEnHB2zpnUFzWLwHmmiu0emQmm2KLIdL7_l8vykBwPw5alVzKWaz0jH1cjdBRsdG9IBxdxoA2Y4CxErGlsgx83LYXoX5ylHUwYaI07n5rO99Q39MmtBE3xwT8K2kPvhxYxUggBpsTygbZu03YTxaZx1mEfKXZoY_AB69H-YqpEiZ5ibBOiOyIHDXQDHv_MOXm-uX6q7hbL1e19dblcbLhicdFoK8Ai1FZpI7mUqlayBs60LItCFFmukGlTqEwYY0FKI7Mctam5LW1puJyT02_uLvjXEYe43vox9GnlWqikVBQyE6l19t16R-Ob4esTFte74F4gTOskM5ci2VQppTvMSfn_duUifCmo_NhH-QnE2IsH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503927342</pqid></control><display><type>article</type><title>Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol</title><source>Royal Society Of Chemistry Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Qi, Feixuanyu ; Liu, Kang ; Ma, De-Kun ; Cai, Fangfang ; Liu, Min ; Xu, Quanlong ; Chen, Wei ; Qi, Chenze ; Yang, Dongpeng ; Huang, Shaoming</creator><creatorcontrib>Qi, Feixuanyu ; Liu, Kang ; Ma, De-Kun ; Cai, Fangfang ; Liu, Min ; Xu, Quanlong ; Chen, Wei ; Qi, Chenze ; Yang, Dongpeng ; Huang, Shaoming</creatorcontrib><description>Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO2 reduction reaction (CO2RR) toward ethanol. As a result, 50% faradaic efficiency (FE) for ethanol was achieved over the obtained electrocatalyst at only -0.60 V versus the reversible hydrogen electrode (RHE) in CO2-saturated 0.5 M KHCO3 aqueous solution, which ranks as the best electrocatalysts for the CO2RR to ethanol. The experimental results and theoretical calculations showed that Mo and Ti dual active sites formed on the interfaces of TiO2 and MoS2 could adjust CO binding energy and promote the CO-CO coupling reaction and its subsequent transformation. A new regulatory mechanism of the CO coupling reaction and the possible reaction path were proposed based on experimental results and density functional theory (DFT) calculations.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta11457j</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Aqueous solutions ; Arrays ; Atomic layer epitaxy ; Carbon dioxide ; Chemical reduction ; Chemistry ; Chemistry, Physical ; Coupling ; Density functional theory ; Deposition ; Electrocatalysts ; Electrochemistry ; Energy & Fuels ; Ethanol ; Interfaces ; Materials Science ; Materials Science, Multidisciplinary ; Mathematical analysis ; Molybdenum disulfide ; Nanosheets ; NMR ; Nuclear magnetic resonance ; Physical Sciences ; Raman spectra ; Raman spectroscopy ; Regulatory mechanisms (biology) ; Science & Technology ; Technology ; Titanium ; Titanium dioxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (11), p.6790-6796</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>26</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000632069500010</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-g150t-f9c2aceadc59b31335d53da109387727465e09b7542bbca33b346e9bd1c8c8b13</cites><orcidid>0000-0002-9007-4817 ; 0000-0001-6958-150X ; 0000-0002-6950-5985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Qi, Feixuanyu</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Ma, De-Kun</creatorcontrib><creatorcontrib>Cai, Fangfang</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Xu, Quanlong</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Qi, Chenze</creatorcontrib><creatorcontrib>Yang, Dongpeng</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><title>Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><addtitle>J MATER CHEM A</addtitle><description>Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO2 reduction reaction (CO2RR) toward ethanol. As a result, 50% faradaic efficiency (FE) for ethanol was achieved over the obtained electrocatalyst at only -0.60 V versus the reversible hydrogen electrode (RHE) in CO2-saturated 0.5 M KHCO3 aqueous solution, which ranks as the best electrocatalysts for the CO2RR to ethanol. The experimental results and theoretical calculations showed that Mo and Ti dual active sites formed on the interfaces of TiO2 and MoS2 could adjust CO binding energy and promote the CO-CO coupling reaction and its subsequent transformation. A new regulatory mechanism of the CO coupling reaction and the possible reaction path were proposed based on experimental results and density functional theory (DFT) calculations.</description><subject>Aqueous solutions</subject><subject>Arrays</subject><subject>Atomic layer epitaxy</subject><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Coupling</subject><subject>Density functional theory</subject><subject>Deposition</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy & Fuels</subject><subject>Ethanol</subject><subject>Interfaces</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Mathematical analysis</subject><subject>Molybdenum disulfide</subject><subject>Nanosheets</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physical Sciences</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Regulatory mechanisms (biology)</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkctOwzAQRS0EElVhwxdYYokKfsRJvEThKRV1AayrsTNpXIW4OA4oH8L_YsRjjTdzF1dn5DOEnHB2zpnUFzWLwHmmiu0emQmm2KLIdL7_l8vykBwPw5alVzKWaz0jH1cjdBRsdG9IBxdxoA2Y4CxErGlsgx83LYXoX5ylHUwYaI07n5rO99Q39MmtBE3xwT8K2kPvhxYxUggBpsTygbZu03YTxaZx1mEfKXZoY_AB69H-YqpEiZ5ibBOiOyIHDXQDHv_MOXm-uX6q7hbL1e19dblcbLhicdFoK8Ai1FZpI7mUqlayBs60LItCFFmukGlTqEwYY0FKI7Mctam5LW1puJyT02_uLvjXEYe43vox9GnlWqikVBQyE6l19t16R-Ob4esTFte74F4gTOskM5ci2VQppTvMSfn_duUifCmo_NhH-QnE2IsH</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Qi, Feixuanyu</creator><creator>Liu, Kang</creator><creator>Ma, De-Kun</creator><creator>Cai, Fangfang</creator><creator>Liu, Min</creator><creator>Xu, Quanlong</creator><creator>Chen, Wei</creator><creator>Qi, Chenze</creator><creator>Yang, Dongpeng</creator><creator>Huang, Shaoming</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9007-4817</orcidid><orcidid>https://orcid.org/0000-0001-6958-150X</orcidid><orcidid>https://orcid.org/0000-0002-6950-5985</orcidid></search><sort><creationdate>20210101</creationdate><title>Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol</title><author>Qi, Feixuanyu ; Liu, Kang ; Ma, De-Kun ; Cai, Fangfang ; Liu, Min ; Xu, Quanlong ; Chen, Wei ; Qi, Chenze ; Yang, Dongpeng ; Huang, Shaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g150t-f9c2aceadc59b31335d53da109387727465e09b7542bbca33b346e9bd1c8c8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aqueous solutions</topic><topic>Arrays</topic><topic>Atomic layer epitaxy</topic><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Coupling</topic><topic>Density functional theory</topic><topic>Deposition</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy & Fuels</topic><topic>Ethanol</topic><topic>Interfaces</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Mathematical analysis</topic><topic>Molybdenum disulfide</topic><topic>Nanosheets</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physical Sciences</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Regulatory mechanisms (biology)</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Feixuanyu</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Ma, De-Kun</creatorcontrib><creatorcontrib>Cai, Fangfang</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Xu, Quanlong</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Qi, Chenze</creatorcontrib><creatorcontrib>Yang, Dongpeng</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Feixuanyu</au><au>Liu, Kang</au><au>Ma, De-Kun</au><au>Cai, Fangfang</au><au>Liu, Min</au><au>Xu, Quanlong</au><au>Chen, Wei</au><au>Qi, Chenze</au><au>Yang, Dongpeng</au><au>Huang, Shaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><stitle>J MATER CHEM A</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>11</issue><spage>6790</spage><epage>6796</epage><pages>6790-6796</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Electrochemical reduction of CO2 to ethanol through renewable electricity is highly desirable but still challenging. Here, we demonstrated that TiO2/MoS2 nanosheet arrays synthesized through atomic layer deposition (ALD) of TiO2 on the surfaces of MoS2 nanosheet arrays enabled the electrochemical CO2 reduction reaction (CO2RR) toward ethanol. As a result, 50% faradaic efficiency (FE) for ethanol was achieved over the obtained electrocatalyst at only -0.60 V versus the reversible hydrogen electrode (RHE) in CO2-saturated 0.5 M KHCO3 aqueous solution, which ranks as the best electrocatalysts for the CO2RR to ethanol. The experimental results and theoretical calculations showed that Mo and Ti dual active sites formed on the interfaces of TiO2 and MoS2 could adjust CO binding energy and promote the CO-CO coupling reaction and its subsequent transformation. A new regulatory mechanism of the CO coupling reaction and the possible reaction path were proposed based on experimental results and density functional theory (DFT) calculations.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><doi>10.1039/d0ta11457j</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9007-4817</orcidid><orcidid>https://orcid.org/0000-0001-6958-150X</orcidid><orcidid>https://orcid.org/0000-0002-6950-5985</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (11), p.6790-6796 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2503927342 |
source | Royal Society Of Chemistry Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Aqueous solutions Arrays Atomic layer epitaxy Carbon dioxide Chemical reduction Chemistry Chemistry, Physical Coupling Density functional theory Deposition Electrocatalysts Electrochemistry Energy & Fuels Ethanol Interfaces Materials Science Materials Science, Multidisciplinary Mathematical analysis Molybdenum disulfide Nanosheets NMR Nuclear magnetic resonance Physical Sciences Raman spectra Raman spectroscopy Regulatory mechanisms (biology) Science & Technology Technology Titanium Titanium dioxide |
title | Dual active sites fabricated through atomic layer deposition of TiO2 on MoS2 nanosheet arrays for highly efficient electroreduction of CO2 to ethanol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20active%20sites%20fabricated%20through%20atomic%20layer%20deposition%20of%20TiO2%20on%20MoS2%20nanosheet%20arrays%20for%20highly%20efficient%20electroreduction%20of%20CO2%20to%20ethanol&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qi,%20Feixuanyu&rft.date=2021-01-01&rft.volume=9&rft.issue=11&rft.spage=6790&rft.epage=6796&rft.pages=6790-6796&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta11457j&rft_dat=%3Cproquest_webof%3E2503927342%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503927342&rft_id=info:pmid/&rfr_iscdi=true |