Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory
In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equa...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2021-04, Vol.37 (2), p.1389-1407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1407 |
---|---|
container_issue | 2 |
container_start_page | 1389 |
container_title | Engineering with computers |
container_volume | 37 |
creator | Mallek, H. Jrad, H. Wali, M. Dammak, F. |
description | In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design. |
doi_str_mv | 10.1007/s00366-019-00891-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503551018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503551018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-deb62a6fb099b210504ea24b9268d0cb54027a1c0fff2e7c07b166d0f6d12f8a3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeAz9F70zZtH2XqFMYEnc8hTZOZsTYzaYX66-2c4JtP9-U7h3M_Qi4RrhEgv4kAiRAMsGQARYkMj8gE0yRjmRDJMZkA5jkDIfJTchbjBgATgHJCmqVvt641KtB6aFXjNFWt2g7RReot3Tnz5c3W6C44zSrf1qamD3M2W65eqPbNzkfXGRq70OuuDybSPrp2PXZQ1-yC_9zjr3cr2r0bH4ZzcmLVNpqL3zslbw_3q9kjWzzPn2a3C6YTLDtWm0pwJWwFZVlxhAxSo3halVwUNegqS4HnCjVYa7nJNeQVClGDFTVyW6hkSq4OveOEj97ETm58H8a_ouQZJFmGgMVI8QOlg48xGCt3wTUqDBJB7rXKg1Y5apU_WiWOoeQQiiPcrk34q_4n9Q0ldnvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503551018</pqid></control><display><type>article</type><title>Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory</title><source>SpringerNature Journals</source><creator>Mallek, H. ; Jrad, H. ; Wali, M. ; Dammak, F.</creator><creatorcontrib>Mallek, H. ; Jrad, H. ; Wali, M. ; Dammak, F.</creatorcontrib><description>In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-019-00891-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Composite structures ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Cylindrical shells ; Functionally gradient materials ; Material properties ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Nonlinear dynamics ; Original Article ; Piezoelectricity ; Shear deformation ; Shear stress ; Shells ; Single wall carbon nanotubes ; Spherical shells ; Systems Theory</subject><ispartof>Engineering with computers, 2021-04, Vol.37 (2), p.1389-1407</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-deb62a6fb099b210504ea24b9268d0cb54027a1c0fff2e7c07b166d0f6d12f8a3</citedby><cites>FETCH-LOGICAL-c319t-deb62a6fb099b210504ea24b9268d0cb54027a1c0fff2e7c07b166d0f6d12f8a3</cites><orcidid>0000-0003-1681-9558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-019-00891-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-019-00891-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mallek, H.</creatorcontrib><creatorcontrib>Jrad, H.</creatorcontrib><creatorcontrib>Wali, M.</creatorcontrib><creatorcontrib>Dammak, F.</creatorcontrib><title>Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Composite structures</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Cylindrical shells</subject><subject>Functionally gradient materials</subject><subject>Material properties</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Article</subject><subject>Piezoelectricity</subject><subject>Shear deformation</subject><subject>Shear stress</subject><subject>Shells</subject><subject>Single wall carbon nanotubes</subject><subject>Spherical shells</subject><subject>Systems Theory</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFFLwzAUhYMoOKd_wKeAz9F70zZtH2XqFMYEnc8hTZOZsTYzaYX66-2c4JtP9-U7h3M_Qi4RrhEgv4kAiRAMsGQARYkMj8gE0yRjmRDJMZkA5jkDIfJTchbjBgATgHJCmqVvt641KtB6aFXjNFWt2g7RReot3Tnz5c3W6C44zSrf1qamD3M2W65eqPbNzkfXGRq70OuuDybSPrp2PXZQ1-yC_9zjr3cr2r0bH4ZzcmLVNpqL3zslbw_3q9kjWzzPn2a3C6YTLDtWm0pwJWwFZVlxhAxSo3halVwUNegqS4HnCjVYa7nJNeQVClGDFTVyW6hkSq4OveOEj97ETm58H8a_ouQZJFmGgMVI8QOlg48xGCt3wTUqDBJB7rXKg1Y5apU_WiWOoeQQiiPcrk34q_4n9Q0ldnvc</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Mallek, H.</creator><creator>Jrad, H.</creator><creator>Wali, M.</creator><creator>Dammak, F.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1681-9558</orcidid></search><sort><creationdate>20210401</creationdate><title>Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory</title><author>Mallek, H. ; Jrad, H. ; Wali, M. ; Dammak, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-deb62a6fb099b210504ea24b9268d0cb54027a1c0fff2e7c07b166d0f6d12f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Composite structures</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Cylindrical shells</topic><topic>Functionally gradient materials</topic><topic>Material properties</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Article</topic><topic>Piezoelectricity</topic><topic>Shear deformation</topic><topic>Shear stress</topic><topic>Shells</topic><topic>Single wall carbon nanotubes</topic><topic>Spherical shells</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallek, H.</creatorcontrib><creatorcontrib>Jrad, H.</creatorcontrib><creatorcontrib>Wali, M.</creatorcontrib><creatorcontrib>Dammak, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallek, H.</au><au>Jrad, H.</au><au>Wali, M.</au><au>Dammak, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>37</volume><issue>2</issue><spage>1389</spage><epage>1407</epage><pages>1389-1407</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-019-00891-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1681-9558</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-0667 |
ispartof | Engineering with computers, 2021-04, Vol.37 (2), p.1389-1407 |
issn | 0177-0667 1435-5663 |
language | eng |
recordid | cdi_proquest_journals_2503551018 |
source | SpringerNature Journals |
subjects | CAE) and Design Calculus of Variations and Optimal Control Optimization Classical Mechanics Composite structures Computer Science Computer-Aided Engineering (CAD Control Cylindrical shells Functionally gradient materials Material properties Math. Applications in Chemistry Mathematical and Computational Engineering Nonlinear dynamics Original Article Piezoelectricity Shear deformation Shear stress Shells Single wall carbon nanotubes Spherical shells Systems Theory |
title | Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20piezoelectric-bonded%20FG-CNTR%20composite%20structures%20using%20an%20improved%20FSDT%20theory&rft.jtitle=Engineering%20with%20computers&rft.au=Mallek,%20H.&rft.date=2021-04-01&rft.volume=37&rft.issue=2&rft.spage=1389&rft.epage=1407&rft.pages=1389-1407&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-019-00891-1&rft_dat=%3Cproquest_cross%3E2503551018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503551018&rft_id=info:pmid/&rfr_iscdi=true |