Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory

In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2021-04, Vol.37 (2), p.1389-1407
Hauptverfasser: Mallek, H., Jrad, H., Wali, M., Dammak, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1407
container_issue 2
container_start_page 1389
container_title Engineering with computers
container_volume 37
creator Mallek, H.
Jrad, H.
Wali, M.
Dammak, F.
description In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design.
doi_str_mv 10.1007/s00366-019-00891-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503551018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503551018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-deb62a6fb099b210504ea24b9268d0cb54027a1c0fff2e7c07b166d0f6d12f8a3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKd_wKeAz9F70zZtH2XqFMYEnc8hTZOZsTYzaYX66-2c4JtP9-U7h3M_Qi4RrhEgv4kAiRAMsGQARYkMj8gE0yRjmRDJMZkA5jkDIfJTchbjBgATgHJCmqVvt641KtB6aFXjNFWt2g7RReot3Tnz5c3W6C44zSrf1qamD3M2W65eqPbNzkfXGRq70OuuDybSPrp2PXZQ1-yC_9zjr3cr2r0bH4ZzcmLVNpqL3zslbw_3q9kjWzzPn2a3C6YTLDtWm0pwJWwFZVlxhAxSo3halVwUNegqS4HnCjVYa7nJNeQVClGDFTVyW6hkSq4OveOEj97ETm58H8a_ouQZJFmGgMVI8QOlg48xGCt3wTUqDBJB7rXKg1Y5apU_WiWOoeQQiiPcrk34q_4n9Q0ldnvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503551018</pqid></control><display><type>article</type><title>Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory</title><source>SpringerNature Journals</source><creator>Mallek, H. ; Jrad, H. ; Wali, M. ; Dammak, F.</creator><creatorcontrib>Mallek, H. ; Jrad, H. ; Wali, M. ; Dammak, F.</creatorcontrib><description>In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-019-00891-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Composite structures ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Cylindrical shells ; Functionally gradient materials ; Material properties ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Nonlinear dynamics ; Original Article ; Piezoelectricity ; Shear deformation ; Shear stress ; Shells ; Single wall carbon nanotubes ; Spherical shells ; Systems Theory</subject><ispartof>Engineering with computers, 2021-04, Vol.37 (2), p.1389-1407</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-deb62a6fb099b210504ea24b9268d0cb54027a1c0fff2e7c07b166d0f6d12f8a3</citedby><cites>FETCH-LOGICAL-c319t-deb62a6fb099b210504ea24b9268d0cb54027a1c0fff2e7c07b166d0f6d12f8a3</cites><orcidid>0000-0003-1681-9558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-019-00891-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-019-00891-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mallek, H.</creatorcontrib><creatorcontrib>Jrad, H.</creatorcontrib><creatorcontrib>Wali, M.</creatorcontrib><creatorcontrib>Dammak, F.</creatorcontrib><title>Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Composite structures</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Cylindrical shells</subject><subject>Functionally gradient materials</subject><subject>Material properties</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Article</subject><subject>Piezoelectricity</subject><subject>Shear deformation</subject><subject>Shear stress</subject><subject>Shells</subject><subject>Single wall carbon nanotubes</subject><subject>Spherical shells</subject><subject>Systems Theory</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFFLwzAUhYMoOKd_wKeAz9F70zZtH2XqFMYEnc8hTZOZsTYzaYX66-2c4JtP9-U7h3M_Qi4RrhEgv4kAiRAMsGQARYkMj8gE0yRjmRDJMZkA5jkDIfJTchbjBgATgHJCmqVvt641KtB6aFXjNFWt2g7RReot3Tnz5c3W6C44zSrf1qamD3M2W65eqPbNzkfXGRq70OuuDybSPrp2PXZQ1-yC_9zjr3cr2r0bH4ZzcmLVNpqL3zslbw_3q9kjWzzPn2a3C6YTLDtWm0pwJWwFZVlxhAxSo3halVwUNegqS4HnCjVYa7nJNeQVClGDFTVyW6hkSq4OveOEj97ETm58H8a_ouQZJFmGgMVI8QOlg48xGCt3wTUqDBJB7rXKg1Y5apU_WiWOoeQQiiPcrk34q_4n9Q0ldnvc</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Mallek, H.</creator><creator>Jrad, H.</creator><creator>Wali, M.</creator><creator>Dammak, F.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1681-9558</orcidid></search><sort><creationdate>20210401</creationdate><title>Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory</title><author>Mallek, H. ; Jrad, H. ; Wali, M. ; Dammak, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-deb62a6fb099b210504ea24b9268d0cb54027a1c0fff2e7c07b166d0f6d12f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Composite structures</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Cylindrical shells</topic><topic>Functionally gradient materials</topic><topic>Material properties</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Article</topic><topic>Piezoelectricity</topic><topic>Shear deformation</topic><topic>Shear stress</topic><topic>Shells</topic><topic>Single wall carbon nanotubes</topic><topic>Spherical shells</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallek, H.</creatorcontrib><creatorcontrib>Jrad, H.</creatorcontrib><creatorcontrib>Wali, M.</creatorcontrib><creatorcontrib>Dammak, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallek, H.</au><au>Jrad, H.</au><au>Wali, M.</au><au>Dammak, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>37</volume><issue>2</issue><spage>1389</spage><epage>1407</epage><pages>1389-1407</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is demonstrated by validating the obtained results against those of other studies from literature considering shell structures. Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and cylindrical shells, will be presented and can be considered for future structure design.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-019-00891-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1681-9558</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-0667
ispartof Engineering with computers, 2021-04, Vol.37 (2), p.1389-1407
issn 0177-0667
1435-5663
language eng
recordid cdi_proquest_journals_2503551018
source SpringerNature Journals
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Classical Mechanics
Composite structures
Computer Science
Computer-Aided Engineering (CAD
Control
Cylindrical shells
Functionally gradient materials
Material properties
Math. Applications in Chemistry
Mathematical and Computational Engineering
Nonlinear dynamics
Original Article
Piezoelectricity
Shear deformation
Shear stress
Shells
Single wall carbon nanotubes
Spherical shells
Systems Theory
title Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20analysis%20of%20piezoelectric-bonded%20FG-CNTR%20composite%20structures%20using%20an%20improved%20FSDT%20theory&rft.jtitle=Engineering%20with%20computers&rft.au=Mallek,%20H.&rft.date=2021-04-01&rft.volume=37&rft.issue=2&rft.spage=1389&rft.epage=1407&rft.pages=1389-1407&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-019-00891-1&rft_dat=%3Cproquest_cross%3E2503551018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503551018&rft_id=info:pmid/&rfr_iscdi=true