High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures

Monolayer MoS 2 is a direct band gap semiconductor with large exciton binding energy, which is a promising candidate for the application of ultrathin optoelectronic devices. However, the optoelectronic performance of monolayer MoS 2 is seriously limited to its growth quality and carrier mobility. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2020-04, Vol.13 (4), p.1053-1059
Hauptverfasser: Li, Fang, Xu, Boyi, Yang, Wen, Qi, Zhaoyang, Ma, Chao, Wang, Yajuan, Zhang, Xuehong, Luo, Zhuoran, Liang, Delang, Li, Dong, Li, Ziwei, Pan, Anlian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1059
container_issue 4
container_start_page 1053
container_title Nano research
container_volume 13
creator Li, Fang
Xu, Boyi
Yang, Wen
Qi, Zhaoyang
Ma, Chao
Wang, Yajuan
Zhang, Xuehong
Luo, Zhuoran
Liang, Delang
Li, Dong
Li, Ziwei
Pan, Anlian
description Monolayer MoS 2 is a direct band gap semiconductor with large exciton binding energy, which is a promising candidate for the application of ultrathin optoelectronic devices. However, the optoelectronic performance of monolayer MoS 2 is seriously limited to its growth quality and carrier mobility. In this work, we report the direct vapor growth and the optoelectronic device of vertically-stacked MoS 2 /MoSe 2 heterostructure, and further discuss the mechanism of improved device performance. The optical and high-resolution atomic characterizations demonstrate that the heterostructure interface is of high-quality without atomic alloying. Electrical transport measurements indicate that the heterostructure transistor exhibits a high mobility of 28.5 cm 2 /(V·s) and a high on/off ratio of 10 7 . The optoelectronic characterizations prove that the heterostructure device presents an enhanced photoresponsivity of 36 A/W and a remarkable detectivity of 4.8 × 10 11 Jones, which benefited from the interface induced built-in electric field and carrier dependent Coulomb screening effect. This work demonstrates that the construction of two-dimensional (2D) semiconductor heterostructures plays a significant role in modifying the optoelectronic device properties of 2D materials.
doi_str_mv 10.1007/s12274-020-2743-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503549768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398419407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-efde69e029224c8a2834c6fe0b3cdea6b1d977f6491acb547cb63b4abff1b5073</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIHcLPEOdSvxPERVUCRijgA4mjZzqZN1cbBdirx97gExAn2sLNazcxqJ8suCb4mGItZIJQKnmOK84QsF0fZhEhZ5TjV8c9MKD_NzkLYYFxSwqtJZhftap334Bvnd7qzgFwfHWzBRu-61qIa9q2FgIwOUCPXob3u0tKjN623Ae3Bx9bqLXp0z3SWGlC0hgjehegHGwcP4Tw7aRIXLr5xmr3e3b7MF_ny6f5hfrPMLeM85tDUUErAVFLKbaVpxbgtG8CG2Rp0aUgthWhKLom2puDCmpIZrk3TEFNgwabZ1ejbe_c-QIhq4wbfpZOKFpgVXIqy-pfFZMWJ5F9eZGTZ9Enw0KjetzvtPxTB6pC4GhNXKXF1SFwdNHTUhMTtVuB_nf8WfQLB4IQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398419407</pqid></control><display><type>article</type><title>High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures</title><source>Springer Online Journals</source><creator>Li, Fang ; Xu, Boyi ; Yang, Wen ; Qi, Zhaoyang ; Ma, Chao ; Wang, Yajuan ; Zhang, Xuehong ; Luo, Zhuoran ; Liang, Delang ; Li, Dong ; Li, Ziwei ; Pan, Anlian</creator><creatorcontrib>Li, Fang ; Xu, Boyi ; Yang, Wen ; Qi, Zhaoyang ; Ma, Chao ; Wang, Yajuan ; Zhang, Xuehong ; Luo, Zhuoran ; Liang, Delang ; Li, Dong ; Li, Ziwei ; Pan, Anlian</creatorcontrib><description>Monolayer MoS 2 is a direct band gap semiconductor with large exciton binding energy, which is a promising candidate for the application of ultrathin optoelectronic devices. However, the optoelectronic performance of monolayer MoS 2 is seriously limited to its growth quality and carrier mobility. In this work, we report the direct vapor growth and the optoelectronic device of vertically-stacked MoS 2 /MoSe 2 heterostructure, and further discuss the mechanism of improved device performance. The optical and high-resolution atomic characterizations demonstrate that the heterostructure interface is of high-quality without atomic alloying. Electrical transport measurements indicate that the heterostructure transistor exhibits a high mobility of 28.5 cm 2 /(V·s) and a high on/off ratio of 10 7 . The optoelectronic characterizations prove that the heterostructure device presents an enhanced photoresponsivity of 36 A/W and a remarkable detectivity of 4.8 × 10 11 Jones, which benefited from the interface induced built-in electric field and carrier dependent Coulomb screening effect. This work demonstrates that the construction of two-dimensional (2D) semiconductor heterostructures plays a significant role in modifying the optoelectronic device properties of 2D materials.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-2743-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Carrier mobility ; Chemical vapor deposition ; Chemistry and Materials Science ; Condensed Matter Physics ; Design ; Electric fields ; Excitons ; Heterostructures ; Laboratories ; Materials Science ; Microscopy ; Mobility ; Molybdenum compounds ; Molybdenum disulfide ; Monolayers ; Nanotechnology ; Optoelectronic devices ; Research Article ; Semiconductors ; Transistors ; Two dimensional materials</subject><ispartof>Nano research, 2020-04, Vol.13 (4), p.1053-1059</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-efde69e029224c8a2834c6fe0b3cdea6b1d977f6491acb547cb63b4abff1b5073</citedby><cites>FETCH-LOGICAL-c344t-efde69e029224c8a2834c6fe0b3cdea6b1d977f6491acb547cb63b4abff1b5073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-2743-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-2743-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Xu, Boyi</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Qi, Zhaoyang</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Wang, Yajuan</creatorcontrib><creatorcontrib>Zhang, Xuehong</creatorcontrib><creatorcontrib>Luo, Zhuoran</creatorcontrib><creatorcontrib>Liang, Delang</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Li, Ziwei</creatorcontrib><creatorcontrib>Pan, Anlian</creatorcontrib><title>High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Monolayer MoS 2 is a direct band gap semiconductor with large exciton binding energy, which is a promising candidate for the application of ultrathin optoelectronic devices. However, the optoelectronic performance of monolayer MoS 2 is seriously limited to its growth quality and carrier mobility. In this work, we report the direct vapor growth and the optoelectronic device of vertically-stacked MoS 2 /MoSe 2 heterostructure, and further discuss the mechanism of improved device performance. The optical and high-resolution atomic characterizations demonstrate that the heterostructure interface is of high-quality without atomic alloying. Electrical transport measurements indicate that the heterostructure transistor exhibits a high mobility of 28.5 cm 2 /(V·s) and a high on/off ratio of 10 7 . The optoelectronic characterizations prove that the heterostructure device presents an enhanced photoresponsivity of 36 A/W and a remarkable detectivity of 4.8 × 10 11 Jones, which benefited from the interface induced built-in electric field and carrier dependent Coulomb screening effect. This work demonstrates that the construction of two-dimensional (2D) semiconductor heterostructures plays a significant role in modifying the optoelectronic device properties of 2D materials.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carrier mobility</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Design</subject><subject>Electric fields</subject><subject>Excitons</subject><subject>Heterostructures</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Mobility</subject><subject>Molybdenum compounds</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Optoelectronic devices</subject><subject>Research Article</subject><subject>Semiconductors</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQjBBIlMIHcLPEOdSvxPERVUCRijgA4mjZzqZN1cbBdirx97gExAn2sLNazcxqJ8suCb4mGItZIJQKnmOK84QsF0fZhEhZ5TjV8c9MKD_NzkLYYFxSwqtJZhftap334Bvnd7qzgFwfHWzBRu-61qIa9q2FgIwOUCPXob3u0tKjN623Ae3Bx9bqLXp0z3SWGlC0hgjehegHGwcP4Tw7aRIXLr5xmr3e3b7MF_ny6f5hfrPMLeM85tDUUErAVFLKbaVpxbgtG8CG2Rp0aUgthWhKLom2puDCmpIZrk3TEFNgwabZ1ejbe_c-QIhq4wbfpZOKFpgVXIqy-pfFZMWJ5F9eZGTZ9Enw0KjetzvtPxTB6pC4GhNXKXF1SFwdNHTUhMTtVuB_nf8WfQLB4IQI</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Fang</creator><creator>Xu, Boyi</creator><creator>Yang, Wen</creator><creator>Qi, Zhaoyang</creator><creator>Ma, Chao</creator><creator>Wang, Yajuan</creator><creator>Zhang, Xuehong</creator><creator>Luo, Zhuoran</creator><creator>Liang, Delang</creator><creator>Li, Dong</creator><creator>Li, Ziwei</creator><creator>Pan, Anlian</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20200401</creationdate><title>High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures</title><author>Li, Fang ; Xu, Boyi ; Yang, Wen ; Qi, Zhaoyang ; Ma, Chao ; Wang, Yajuan ; Zhang, Xuehong ; Luo, Zhuoran ; Liang, Delang ; Li, Dong ; Li, Ziwei ; Pan, Anlian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-efde69e029224c8a2834c6fe0b3cdea6b1d977f6491acb547cb63b4abff1b5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carrier mobility</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Design</topic><topic>Electric fields</topic><topic>Excitons</topic><topic>Heterostructures</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Mobility</topic><topic>Molybdenum compounds</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Optoelectronic devices</topic><topic>Research Article</topic><topic>Semiconductors</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Xu, Boyi</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Qi, Zhaoyang</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Wang, Yajuan</creatorcontrib><creatorcontrib>Zhang, Xuehong</creatorcontrib><creatorcontrib>Luo, Zhuoran</creatorcontrib><creatorcontrib>Liang, Delang</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Li, Ziwei</creatorcontrib><creatorcontrib>Pan, Anlian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Fang</au><au>Xu, Boyi</au><au>Yang, Wen</au><au>Qi, Zhaoyang</au><au>Ma, Chao</au><au>Wang, Yajuan</au><au>Zhang, Xuehong</au><au>Luo, Zhuoran</au><au>Liang, Delang</au><au>Li, Dong</au><au>Li, Ziwei</au><au>Pan, Anlian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>13</volume><issue>4</issue><spage>1053</spage><epage>1059</epage><pages>1053-1059</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Monolayer MoS 2 is a direct band gap semiconductor with large exciton binding energy, which is a promising candidate for the application of ultrathin optoelectronic devices. However, the optoelectronic performance of monolayer MoS 2 is seriously limited to its growth quality and carrier mobility. In this work, we report the direct vapor growth and the optoelectronic device of vertically-stacked MoS 2 /MoSe 2 heterostructure, and further discuss the mechanism of improved device performance. The optical and high-resolution atomic characterizations demonstrate that the heterostructure interface is of high-quality without atomic alloying. Electrical transport measurements indicate that the heterostructure transistor exhibits a high mobility of 28.5 cm 2 /(V·s) and a high on/off ratio of 10 7 . The optoelectronic characterizations prove that the heterostructure device presents an enhanced photoresponsivity of 36 A/W and a remarkable detectivity of 4.8 × 10 11 Jones, which benefited from the interface induced built-in electric field and carrier dependent Coulomb screening effect. This work demonstrates that the construction of two-dimensional (2D) semiconductor heterostructures plays a significant role in modifying the optoelectronic device properties of 2D materials.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-020-2743-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2020-04, Vol.13 (4), p.1053-1059
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2503549768
source Springer Online Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carrier mobility
Chemical vapor deposition
Chemistry and Materials Science
Condensed Matter Physics
Design
Electric fields
Excitons
Heterostructures
Laboratories
Materials Science
Microscopy
Mobility
Molybdenum compounds
Molybdenum disulfide
Monolayers
Nanotechnology
Optoelectronic devices
Research Article
Semiconductors
Transistors
Two dimensional materials
title High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20optoelectronic%20devices%20based%20on%20van%20der%20Waals%20vertical%20MoS2/MoSe2%20heterostructures&rft.jtitle=Nano%20research&rft.au=Li,%20Fang&rft.date=2020-04-01&rft.volume=13&rft.issue=4&rft.spage=1053&rft.epage=1059&rft.pages=1053-1059&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-2743-7&rft_dat=%3Cproquest_cross%3E2398419407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398419407&rft_id=info:pmid/&rfr_iscdi=true