Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines

Photocatalytic oxidation has been widely employed in organic synthesis, by virtue of the green, mild and simple reaction conditions as well as high selectivity. Introducing oxygen vacancies (OVs) with proper concentrations into the photocatalysts has been proven as an effective strategy to boost the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2019-07, Vol.12 (7), p.1625-1630
Hauptverfasser: Tong, Xuanjue, Cao, Xing, Han, Tong, Cheong, Weng-Chon, Lin, Rui, Chen, Zheng, Wang, Dingsheng, Chen, Chen, Peng, Qing, Li, Yadong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1630
container_issue 7
container_start_page 1625
container_title Nano research
container_volume 12
creator Tong, Xuanjue
Cao, Xing
Han, Tong
Cheong, Weng-Chon
Lin, Rui
Chen, Zheng
Wang, Dingsheng
Chen, Chen
Peng, Qing
Li, Yadong
description Photocatalytic oxidation has been widely employed in organic synthesis, by virtue of the green, mild and simple reaction conditions as well as high selectivity. Introducing oxygen vacancies (OVs) with proper concentrations into the photocatalysts has been proven as an effective strategy to boost the catalytic performances. However, the currently used treatment method under high temperature at reducing atmosphere inevitably introduces a large number of OVs at the interior of the catalyst and serving as the recombination centers of carriers. To address this issue, here we develop a facile solvothermal process to prepare ultrathin BiOBr nanosheets with rich surface OVs. This method effectively decreases the bulk of the material and the ratio of interior OVs, rendering most of the OVs exposed on the surfaces which act as exposed catalytic sites and enhance the separation of carriers, therefore significantly elevates the photocatalytic performances. For the photo-oxidation reaction of secondary amines, under the conditions of visible light, ambient temperature and atmosphere, the BiOBr nanosheets featuring rich surface OVs deliver a doubled conversion compared to those with low OV concentrations, and a high selectivity of 99%, a high stability as the performance shows no reduction after 5 times of circular reaction.
doi_str_mv 10.1007/s12274-018-2404-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503537064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212987118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-26954a3c4d5e4c909bdcbd5c161453c3556a7bf7a98d0c12e090197237c3d5903</originalsourceid><addsrcrecordid>eNp9kctOAjEUhidGExF9AHdNXI_2OjNdCvGWkLjRdVM6Z5gSaLEtCK_gU1uCl5V2c7r4_u_k5C-KS4KvCcb1TSSU1rzEpCkpx7zcHhUDImVT4vyOv_-E8tPiLMY5xhUlvBkUH2PvNuAsuIQ6PQ3W6GS9Q75DI_s8Cmi9SEGn3jrktPOxB0gRvdvUo8z2yG93M3Boo412xkJEnQ9o1fvks0gvdskaFGEBJtkNZNq2P_4IxrtWhx3SS-sgnhcnnV5EuPiaw-L1_u5l_FhOnh-exreT0jDOU0krKbhmhrcCuJFYTlszbYUhFeGCGSZEpetpV2vZtNgQClhiImvKasNaITEbFlcH7yr4tzXEpOZ-HVxeqajATLAaV_xfihIqm5qQJlPkQJngYwzQqVWwy3yTIljti1GHYlQuRu2LUducoYdMzKybQfg1_x36BJ04kxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212987118</pqid></control><display><type>article</type><title>Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines</title><source>SpringerNature Journals</source><creator>Tong, Xuanjue ; Cao, Xing ; Han, Tong ; Cheong, Weng-Chon ; Lin, Rui ; Chen, Zheng ; Wang, Dingsheng ; Chen, Chen ; Peng, Qing ; Li, Yadong</creator><creatorcontrib>Tong, Xuanjue ; Cao, Xing ; Han, Tong ; Cheong, Weng-Chon ; Lin, Rui ; Chen, Zheng ; Wang, Dingsheng ; Chen, Chen ; Peng, Qing ; Li, Yadong</creatorcontrib><description>Photocatalytic oxidation has been widely employed in organic synthesis, by virtue of the green, mild and simple reaction conditions as well as high selectivity. Introducing oxygen vacancies (OVs) with proper concentrations into the photocatalysts has been proven as an effective strategy to boost the catalytic performances. However, the currently used treatment method under high temperature at reducing atmosphere inevitably introduces a large number of OVs at the interior of the catalyst and serving as the recombination centers of carriers. To address this issue, here we develop a facile solvothermal process to prepare ultrathin BiOBr nanosheets with rich surface OVs. This method effectively decreases the bulk of the material and the ratio of interior OVs, rendering most of the OVs exposed on the surfaces which act as exposed catalytic sites and enhance the separation of carriers, therefore significantly elevates the photocatalytic performances. For the photo-oxidation reaction of secondary amines, under the conditions of visible light, ambient temperature and atmosphere, the BiOBr nanosheets featuring rich surface OVs deliver a doubled conversion compared to those with low OV concentrations, and a high selectivity of 99%, a high stability as the performance shows no reduction after 5 times of circular reaction.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-018-2404-x</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Active sites ; Ambient temperature ; Amines ; Atmosphere ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Chemistry and Materials Science ; Condensed Matter Physics ; Fabrication ; High temperature ; Materials Science ; Nanosheets ; Nanotechnology ; Oxidation ; Oxygen ; Photocatalysis ; Photooxidation ; Recombination ; Research Article ; Selectivity ; Vacancies</subject><ispartof>Nano research, 2019-07, Vol.12 (7), p.1625-1630</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Nano Research is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-26954a3c4d5e4c909bdcbd5c161453c3556a7bf7a98d0c12e090197237c3d5903</citedby><cites>FETCH-LOGICAL-c344t-26954a3c4d5e4c909bdcbd5c161453c3556a7bf7a98d0c12e090197237c3d5903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-018-2404-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-018-2404-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tong, Xuanjue</creatorcontrib><creatorcontrib>Cao, Xing</creatorcontrib><creatorcontrib>Han, Tong</creatorcontrib><creatorcontrib>Cheong, Weng-Chon</creatorcontrib><creatorcontrib>Lin, Rui</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Peng, Qing</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><title>Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Photocatalytic oxidation has been widely employed in organic synthesis, by virtue of the green, mild and simple reaction conditions as well as high selectivity. Introducing oxygen vacancies (OVs) with proper concentrations into the photocatalysts has been proven as an effective strategy to boost the catalytic performances. However, the currently used treatment method under high temperature at reducing atmosphere inevitably introduces a large number of OVs at the interior of the catalyst and serving as the recombination centers of carriers. To address this issue, here we develop a facile solvothermal process to prepare ultrathin BiOBr nanosheets with rich surface OVs. This method effectively decreases the bulk of the material and the ratio of interior OVs, rendering most of the OVs exposed on the surfaces which act as exposed catalytic sites and enhance the separation of carriers, therefore significantly elevates the photocatalytic performances. For the photo-oxidation reaction of secondary amines, under the conditions of visible light, ambient temperature and atmosphere, the BiOBr nanosheets featuring rich surface OVs deliver a doubled conversion compared to those with low OV concentrations, and a high selectivity of 99%, a high stability as the performance shows no reduction after 5 times of circular reaction.</description><subject>Active sites</subject><subject>Ambient temperature</subject><subject>Amines</subject><subject>Atmosphere</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Fabrication</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Photocatalysis</subject><subject>Photooxidation</subject><subject>Recombination</subject><subject>Research Article</subject><subject>Selectivity</subject><subject>Vacancies</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctOAjEUhidGExF9AHdNXI_2OjNdCvGWkLjRdVM6Z5gSaLEtCK_gU1uCl5V2c7r4_u_k5C-KS4KvCcb1TSSU1rzEpCkpx7zcHhUDImVT4vyOv_-E8tPiLMY5xhUlvBkUH2PvNuAsuIQ6PQ3W6GS9Q75DI_s8Cmi9SEGn3jrktPOxB0gRvdvUo8z2yG93M3Boo412xkJEnQ9o1fvks0gvdskaFGEBJtkNZNq2P_4IxrtWhx3SS-sgnhcnnV5EuPiaw-L1_u5l_FhOnh-exreT0jDOU0krKbhmhrcCuJFYTlszbYUhFeGCGSZEpetpV2vZtNgQClhiImvKasNaITEbFlcH7yr4tzXEpOZ-HVxeqajATLAaV_xfihIqm5qQJlPkQJngYwzQqVWwy3yTIljti1GHYlQuRu2LUducoYdMzKybQfg1_x36BJ04kxs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Tong, Xuanjue</creator><creator>Cao, Xing</creator><creator>Han, Tong</creator><creator>Cheong, Weng-Chon</creator><creator>Lin, Rui</creator><creator>Chen, Zheng</creator><creator>Wang, Dingsheng</creator><creator>Chen, Chen</creator><creator>Peng, Qing</creator><creator>Li, Yadong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190701</creationdate><title>Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines</title><author>Tong, Xuanjue ; Cao, Xing ; Han, Tong ; Cheong, Weng-Chon ; Lin, Rui ; Chen, Zheng ; Wang, Dingsheng ; Chen, Chen ; Peng, Qing ; Li, Yadong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-26954a3c4d5e4c909bdcbd5c161453c3556a7bf7a98d0c12e090197237c3d5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active sites</topic><topic>Ambient temperature</topic><topic>Amines</topic><topic>Atmosphere</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Fabrication</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Photocatalysis</topic><topic>Photooxidation</topic><topic>Recombination</topic><topic>Research Article</topic><topic>Selectivity</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Xuanjue</creatorcontrib><creatorcontrib>Cao, Xing</creatorcontrib><creatorcontrib>Han, Tong</creatorcontrib><creatorcontrib>Cheong, Weng-Chon</creatorcontrib><creatorcontrib>Lin, Rui</creatorcontrib><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wang, Dingsheng</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Peng, Qing</creatorcontrib><creatorcontrib>Li, Yadong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Xuanjue</au><au>Cao, Xing</au><au>Han, Tong</au><au>Cheong, Weng-Chon</au><au>Lin, Rui</au><au>Chen, Zheng</au><au>Wang, Dingsheng</au><au>Chen, Chen</au><au>Peng, Qing</au><au>Li, Yadong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>12</volume><issue>7</issue><spage>1625</spage><epage>1630</epage><pages>1625-1630</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Photocatalytic oxidation has been widely employed in organic synthesis, by virtue of the green, mild and simple reaction conditions as well as high selectivity. Introducing oxygen vacancies (OVs) with proper concentrations into the photocatalysts has been proven as an effective strategy to boost the catalytic performances. However, the currently used treatment method under high temperature at reducing atmosphere inevitably introduces a large number of OVs at the interior of the catalyst and serving as the recombination centers of carriers. To address this issue, here we develop a facile solvothermal process to prepare ultrathin BiOBr nanosheets with rich surface OVs. This method effectively decreases the bulk of the material and the ratio of interior OVs, rendering most of the OVs exposed on the surfaces which act as exposed catalytic sites and enhance the separation of carriers, therefore significantly elevates the photocatalytic performances. For the photo-oxidation reaction of secondary amines, under the conditions of visible light, ambient temperature and atmosphere, the BiOBr nanosheets featuring rich surface OVs deliver a doubled conversion compared to those with low OV concentrations, and a high selectivity of 99%, a high stability as the performance shows no reduction after 5 times of circular reaction.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-018-2404-x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2019-07, Vol.12 (7), p.1625-1630
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2503537064
source SpringerNature Journals
subjects Active sites
Ambient temperature
Amines
Atmosphere
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Catalysis
Catalysts
Chemistry and Materials Science
Condensed Matter Physics
Fabrication
High temperature
Materials Science
Nanosheets
Nanotechnology
Oxidation
Oxygen
Photocatalysis
Photooxidation
Recombination
Research Article
Selectivity
Vacancies
title Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convenient%20fabrication%20of%20BiOBr%20ultrathin%20nanosheets%20with%20rich%20oxygen%20vacancies%20for%20photocatalytic%20selective%20oxidation%20of%20secondary%20amines&rft.jtitle=Nano%20research&rft.au=Tong,%20Xuanjue&rft.date=2019-07-01&rft.volume=12&rft.issue=7&rft.spage=1625&rft.epage=1630&rft.pages=1625-1630&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-018-2404-x&rft_dat=%3Cproquest_cross%3E2212987118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2212987118&rft_id=info:pmid/&rfr_iscdi=true