Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications

A monolayer of Sr 2 Nb 3 O 10 (SNO) is deposited on the Pt/Ti/SiO 2 /Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na 1− x K x )NbO 3 (NKN) film at 350 °C. The crystalline NKN film is grown along th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2019-10, Vol.12 (10), p.2559-2567
Hauptverfasser: Kim, Jong-Hyun, Kweon, Sang Hyo, Nahm, Sahn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2567
container_issue 10
container_start_page 2559
container_title Nano research
container_volume 12
creator Kim, Jong-Hyun
Kweon, Sang Hyo
Nahm, Sahn
description A monolayer of Sr 2 Nb 3 O 10 (SNO) is deposited on the Pt/Ti/SiO 2 /Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na 1− x K x )NbO 3 (NKN) film at 350 °C. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 °C, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pmV −1 , and a leakage current density of 6.47 × 10 −7 Acm −2 at −0.2 MV·cm −1 . Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 °C. Hence, the NKN films grown on the SNO seed-layer at 350 °C can be applied to electronic devices with flexible polymer substrates.
doi_str_mv 10.1007/s12274-019-2486-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503535513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503535513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6e160743ed41ca8c4f4b7a83c44d44d4c876433a021b29a575748e2fea2bc42a3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRUKsP4C7gOprrZGYp3qHgRtchTc_Y1DQZk9TbK_jSThnFlR4CJ4vv_87ir6ojSk4oIeo0U8aUwIS2mImmxnKr2qNt22AyzPbPnzKxW-3nvCSkZlQ0e9XnNL7iAqsekinrBMim91yM9y4A8mDmuEsAqHfwEcGDLclZVBYuoM75VUaPKb4GFANiF2hwxJf85AqgYELMC4CCuphQ5-HNzTyg0RDD4JjDi7OATN97Z01xMeSDaqczPsPh955UD1eX9-c3eHp3fXt-NsWWC1FwDbQmSnCYC2pNY0UnZso03Aox3zzbqFpwbgijM9YaqaQSDbAODJtZwQyfVMejt0_xeQ256GVcpzCc1EwSLrmUlP9LsVq1raolGyg6UjbFnBN0uk9uZdK7pkRvmtFjM3poRm-a0XLIsDGTBzY8Qvo1_x36AgYJkxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267997652</pqid></control><display><type>article</type><title>Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Kim, Jong-Hyun ; Kweon, Sang Hyo ; Nahm, Sahn</creator><creatorcontrib>Kim, Jong-Hyun ; Kweon, Sang Hyo ; Nahm, Sahn</creatorcontrib><description>A monolayer of Sr 2 Nb 3 O 10 (SNO) is deposited on the Pt/Ti/SiO 2 /Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na 1− x K x )NbO 3 (NKN) film at 350 °C. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 °C, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pmV −1 , and a leakage current density of 6.47 × 10 −7 Acm −2 at −0.2 MV·cm −1 . Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 °C. Hence, the NKN films grown on the SNO seed-layer at 350 °C can be applied to electronic devices with flexible polymer substrates.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-019-2486-5</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aerosols ; Annealing ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal structure ; Crystallinity ; Dielectric constant ; Dielectric properties ; Dissipation factor ; Electric fields ; Electrical properties ; Electronic devices ; Electronic equipment ; Ferroelectric materials ; Ferroelectricity ; Langmuir-Blodgett films ; Lead free ; Leakage ; Leakage current ; Low temperature ; Materials Science ; Nanosheets ; Nanotechnology ; Oxygen ; Perovskites ; Piezoelectricity ; Polyimide resins ; Polymers ; Research Article ; Silicon dioxide ; Silicon substrates ; Substrates ; Thin films ; Vacancies</subject><ispartof>Nano research, 2019-10, Vol.12 (10), p.2559-2567</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Nano Research is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6e160743ed41ca8c4f4b7a83c44d44d4c876433a021b29a575748e2fea2bc42a3</citedby><cites>FETCH-LOGICAL-c344t-6e160743ed41ca8c4f4b7a83c44d44d4c876433a021b29a575748e2fea2bc42a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-019-2486-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-019-2486-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, Jong-Hyun</creatorcontrib><creatorcontrib>Kweon, Sang Hyo</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><title>Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>A monolayer of Sr 2 Nb 3 O 10 (SNO) is deposited on the Pt/Ti/SiO 2 /Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na 1− x K x )NbO 3 (NKN) film at 350 °C. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 °C, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pmV −1 , and a leakage current density of 6.47 × 10 −7 Acm −2 at −0.2 MV·cm −1 . Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 °C. Hence, the NKN films grown on the SNO seed-layer at 350 °C can be applied to electronic devices with flexible polymer substrates.</description><subject>Aerosols</subject><subject>Annealing</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dielectric constant</subject><subject>Dielectric properties</subject><subject>Dissipation factor</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Langmuir-Blodgett films</subject><subject>Lead free</subject><subject>Leakage</subject><subject>Leakage current</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Oxygen</subject><subject>Perovskites</subject><subject>Piezoelectricity</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Research Article</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Vacancies</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctKAzEUhgdRUKsP4C7gOprrZGYp3qHgRtchTc_Y1DQZk9TbK_jSThnFlR4CJ4vv_87ir6ojSk4oIeo0U8aUwIS2mImmxnKr2qNt22AyzPbPnzKxW-3nvCSkZlQ0e9XnNL7iAqsekinrBMim91yM9y4A8mDmuEsAqHfwEcGDLclZVBYuoM75VUaPKb4GFANiF2hwxJf85AqgYELMC4CCuphQ5-HNzTyg0RDD4JjDi7OATN97Z01xMeSDaqczPsPh955UD1eX9-c3eHp3fXt-NsWWC1FwDbQmSnCYC2pNY0UnZso03Aox3zzbqFpwbgijM9YaqaQSDbAODJtZwQyfVMejt0_xeQ256GVcpzCc1EwSLrmUlP9LsVq1raolGyg6UjbFnBN0uk9uZdK7pkRvmtFjM3poRm-a0XLIsDGTBzY8Qvo1_x36AgYJkxw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kim, Jong-Hyun</creator><creator>Kweon, Sang Hyo</creator><creator>Nahm, Sahn</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191001</creationdate><title>Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications</title><author>Kim, Jong-Hyun ; Kweon, Sang Hyo ; Nahm, Sahn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6e160743ed41ca8c4f4b7a83c44d44d4c876433a021b29a575748e2fea2bc42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Annealing</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dielectric constant</topic><topic>Dielectric properties</topic><topic>Dissipation factor</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Langmuir-Blodgett films</topic><topic>Lead free</topic><topic>Leakage</topic><topic>Leakage current</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Oxygen</topic><topic>Perovskites</topic><topic>Piezoelectricity</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Research Article</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jong-Hyun</creatorcontrib><creatorcontrib>Kweon, Sang Hyo</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jong-Hyun</au><au>Kweon, Sang Hyo</au><au>Nahm, Sahn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>12</volume><issue>10</issue><spage>2559</spage><epage>2567</epage><pages>2559-2567</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>A monolayer of Sr 2 Nb 3 O 10 (SNO) is deposited on the Pt/Ti/SiO 2 /Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na 1− x K x )NbO 3 (NKN) film at 350 °C. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 °C, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pmV −1 , and a leakage current density of 6.47 × 10 −7 Acm −2 at −0.2 MV·cm −1 . Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 °C. Hence, the NKN films grown on the SNO seed-layer at 350 °C can be applied to electronic devices with flexible polymer substrates.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-019-2486-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2019-10, Vol.12 (10), p.2559-2567
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2503535513
source Springer Nature - Complete Springer Journals
subjects Aerosols
Annealing
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Crystal structure
Crystallinity
Dielectric constant
Dielectric properties
Dissipation factor
Electric fields
Electrical properties
Electronic devices
Electronic equipment
Ferroelectric materials
Ferroelectricity
Langmuir-Blodgett films
Lead free
Leakage
Leakage current
Low temperature
Materials Science
Nanosheets
Nanotechnology
Oxygen
Perovskites
Piezoelectricity
Polyimide resins
Polymers
Research Article
Silicon dioxide
Silicon substrates
Substrates
Thin films
Vacancies
title Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20crystalline%20lead-free%20piezoelectric%20thin%20films%20grown%20on%202D%20perovskite%20nanosheet%20for%20flexible%20electronic%20device%20applications&rft.jtitle=Nano%20research&rft.au=Kim,%20Jong-Hyun&rft.date=2019-10-01&rft.volume=12&rft.issue=10&rft.spage=2559&rft.epage=2567&rft.pages=2559-2567&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-019-2486-5&rft_dat=%3Cproquest_cross%3E2503535513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267997652&rft_id=info:pmid/&rfr_iscdi=true