Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications
A monolayer of Sr 2 Nb 3 O 10 (SNO) is deposited on the Pt/Ti/SiO 2 /Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na 1− x K x )NbO 3 (NKN) film at 350 °C. The crystalline NKN film is grown along th...
Gespeichert in:
Veröffentlicht in: | Nano research 2019-10, Vol.12 (10), p.2559-2567 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2567 |
---|---|
container_issue | 10 |
container_start_page | 2559 |
container_title | Nano research |
container_volume | 12 |
creator | Kim, Jong-Hyun Kweon, Sang Hyo Nahm, Sahn |
description | A monolayer of Sr
2
Nb
3
O
10
(SNO) is deposited on the Pt/Ti/SiO
2
/Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na
1−
x
K
x
)NbO
3
(NKN) film at 350 °C. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 °C, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pmV
−1
, and a leakage current density of 6.47 × 10
−7
Acm
−2
at −0.2 MV·cm
−1
. Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 °C. Hence, the NKN films grown on the SNO seed-layer at 350 °C can be applied to electronic devices with flexible polymer substrates. |
doi_str_mv | 10.1007/s12274-019-2486-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503535513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503535513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6e160743ed41ca8c4f4b7a83c44d44d4c876433a021b29a575748e2fea2bc42a3</originalsourceid><addsrcrecordid>eNp9kctKAzEUhgdRUKsP4C7gOprrZGYp3qHgRtchTc_Y1DQZk9TbK_jSThnFlR4CJ4vv_87ir6ojSk4oIeo0U8aUwIS2mImmxnKr2qNt22AyzPbPnzKxW-3nvCSkZlQ0e9XnNL7iAqsekinrBMim91yM9y4A8mDmuEsAqHfwEcGDLclZVBYuoM75VUaPKb4GFANiF2hwxJf85AqgYELMC4CCuphQ5-HNzTyg0RDD4JjDi7OATN97Z01xMeSDaqczPsPh955UD1eX9-c3eHp3fXt-NsWWC1FwDbQmSnCYC2pNY0UnZso03Aox3zzbqFpwbgijM9YaqaQSDbAODJtZwQyfVMejt0_xeQ256GVcpzCc1EwSLrmUlP9LsVq1raolGyg6UjbFnBN0uk9uZdK7pkRvmtFjM3poRm-a0XLIsDGTBzY8Qvo1_x36AgYJkxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267997652</pqid></control><display><type>article</type><title>Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Kim, Jong-Hyun ; Kweon, Sang Hyo ; Nahm, Sahn</creator><creatorcontrib>Kim, Jong-Hyun ; Kweon, Sang Hyo ; Nahm, Sahn</creatorcontrib><description>A monolayer of Sr
2
Nb
3
O
10
(SNO) is deposited on the Pt/Ti/SiO
2
/Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na
1−
x
K
x
)NbO
3
(NKN) film at 350 °C. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 °C, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pmV
−1
, and a leakage current density of 6.47 × 10
−7
Acm
−2
at −0.2 MV·cm
−1
. Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 °C. Hence, the NKN films grown on the SNO seed-layer at 350 °C can be applied to electronic devices with flexible polymer substrates.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-019-2486-5</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aerosols ; Annealing ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal structure ; Crystallinity ; Dielectric constant ; Dielectric properties ; Dissipation factor ; Electric fields ; Electrical properties ; Electronic devices ; Electronic equipment ; Ferroelectric materials ; Ferroelectricity ; Langmuir-Blodgett films ; Lead free ; Leakage ; Leakage current ; Low temperature ; Materials Science ; Nanosheets ; Nanotechnology ; Oxygen ; Perovskites ; Piezoelectricity ; Polyimide resins ; Polymers ; Research Article ; Silicon dioxide ; Silicon substrates ; Substrates ; Thin films ; Vacancies</subject><ispartof>Nano research, 2019-10, Vol.12 (10), p.2559-2567</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Nano Research is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6e160743ed41ca8c4f4b7a83c44d44d4c876433a021b29a575748e2fea2bc42a3</citedby><cites>FETCH-LOGICAL-c344t-6e160743ed41ca8c4f4b7a83c44d44d4c876433a021b29a575748e2fea2bc42a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-019-2486-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-019-2486-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kim, Jong-Hyun</creatorcontrib><creatorcontrib>Kweon, Sang Hyo</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><title>Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>A monolayer of Sr
2
Nb
3
O
10
(SNO) is deposited on the Pt/Ti/SiO
2
/Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na
1−
x
K
x
)NbO
3
(NKN) film at 350 °C. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 °C, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pmV
−1
, and a leakage current density of 6.47 × 10
−7
Acm
−2
at −0.2 MV·cm
−1
. Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 °C. Hence, the NKN films grown on the SNO seed-layer at 350 °C can be applied to electronic devices with flexible polymer substrates.</description><subject>Aerosols</subject><subject>Annealing</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Dielectric constant</subject><subject>Dielectric properties</subject><subject>Dissipation factor</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Langmuir-Blodgett films</subject><subject>Lead free</subject><subject>Leakage</subject><subject>Leakage current</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Oxygen</subject><subject>Perovskites</subject><subject>Piezoelectricity</subject><subject>Polyimide resins</subject><subject>Polymers</subject><subject>Research Article</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Vacancies</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctKAzEUhgdRUKsP4C7gOprrZGYp3qHgRtchTc_Y1DQZk9TbK_jSThnFlR4CJ4vv_87ir6ojSk4oIeo0U8aUwIS2mImmxnKr2qNt22AyzPbPnzKxW-3nvCSkZlQ0e9XnNL7iAqsekinrBMim91yM9y4A8mDmuEsAqHfwEcGDLclZVBYuoM75VUaPKb4GFANiF2hwxJf85AqgYELMC4CCuphQ5-HNzTyg0RDD4JjDi7OATN97Z01xMeSDaqczPsPh955UD1eX9-c3eHp3fXt-NsWWC1FwDbQmSnCYC2pNY0UnZso03Aox3zzbqFpwbgijM9YaqaQSDbAODJtZwQyfVMejt0_xeQ256GVcpzCc1EwSLrmUlP9LsVq1raolGyg6UjbFnBN0uk9uZdK7pkRvmtFjM3poRm-a0XLIsDGTBzY8Qvo1_x36AgYJkxw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kim, Jong-Hyun</creator><creator>Kweon, Sang Hyo</creator><creator>Nahm, Sahn</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20191001</creationdate><title>Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications</title><author>Kim, Jong-Hyun ; Kweon, Sang Hyo ; Nahm, Sahn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6e160743ed41ca8c4f4b7a83c44d44d4c876433a021b29a575748e2fea2bc42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerosols</topic><topic>Annealing</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Dielectric constant</topic><topic>Dielectric properties</topic><topic>Dissipation factor</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Langmuir-Blodgett films</topic><topic>Lead free</topic><topic>Leakage</topic><topic>Leakage current</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Oxygen</topic><topic>Perovskites</topic><topic>Piezoelectricity</topic><topic>Polyimide resins</topic><topic>Polymers</topic><topic>Research Article</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jong-Hyun</creatorcontrib><creatorcontrib>Kweon, Sang Hyo</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jong-Hyun</au><au>Kweon, Sang Hyo</au><au>Nahm, Sahn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>12</volume><issue>10</issue><spage>2559</spage><epage>2567</epage><pages>2559-2567</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>A monolayer of Sr
2
Nb
3
O
10
(SNO) is deposited on the Pt/Ti/SiO
2
/Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na
1−
x
K
x
)NbO
3
(NKN) film at 350 °C. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 °C, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pmV
−1
, and a leakage current density of 6.47 × 10
−7
Acm
−2
at −0.2 MV·cm
−1
. Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 °C. Hence, the NKN films grown on the SNO seed-layer at 350 °C can be applied to electronic devices with flexible polymer substrates.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-019-2486-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2019-10, Vol.12 (10), p.2559-2567 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2503535513 |
source | Springer Nature - Complete Springer Journals |
subjects | Aerosols Annealing Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Crystal structure Crystallinity Dielectric constant Dielectric properties Dissipation factor Electric fields Electrical properties Electronic devices Electronic equipment Ferroelectric materials Ferroelectricity Langmuir-Blodgett films Lead free Leakage Leakage current Low temperature Materials Science Nanosheets Nanotechnology Oxygen Perovskites Piezoelectricity Polyimide resins Polymers Research Article Silicon dioxide Silicon substrates Substrates Thin films Vacancies |
title | Low-temperature crystalline lead-free piezoelectric thin films grown on 2D perovskite nanosheet for flexible electronic device applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20crystalline%20lead-free%20piezoelectric%20thin%20films%20grown%20on%202D%20perovskite%20nanosheet%20for%20flexible%20electronic%20device%20applications&rft.jtitle=Nano%20research&rft.au=Kim,%20Jong-Hyun&rft.date=2019-10-01&rft.volume=12&rft.issue=10&rft.spage=2559&rft.epage=2567&rft.pages=2559-2567&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-019-2486-5&rft_dat=%3Cproquest_cross%3E2503535513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267997652&rft_id=info:pmid/&rfr_iscdi=true |