Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments
Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process th...
Gespeichert in:
Veröffentlicht in: | Journal of grid computing 2021-06, Vol.19 (2), Article 14 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of grid computing |
container_volume | 19 |
creator | Hosseinzadeh, Mehdi Masdari, Mohammad Rahmani, Amir Masoud Mohammadi, Mokhtar Aldalwie, Adil Hussain Mohammed Majeed, Mohammed Kamal Karim, Sarkhel H. Taher |
description | Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process that tries to map tasks to the most proper set of resources based on some objectives. This paper presents DBOA, a discrete version of the Butterfly Optimization Algorithm (BOA) that applies the Levy flight method to improve its convergence speed and prevent local optima problems. We also employed a task prioritization method to find the task execution order in the scientific workflows. Then, we use DBOA for Dynamic Voltage and Frequency Scaling or DVFS-based data-intensive workflow scheduling and data placement in MEC environments. For evaluating the performance of the proposed scheduling scheme, extensive simulations are conducted on various well-known scientific workflows with different sizes. The obtained experimental results indicate that our method can outperform other algorithms in terms of energy consumption, data access overheads, and so on. |
doi_str_mv | 10.1007/s10723-021-09556-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503534049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503534049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-7b3c1f617e14854d03e53b6bd6b18926fa02d10bee720a094483fd392374c0ce3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9HZj2STY61VC4UK6nnZJJt0S7Kpu5tC_fWmjeDN0wzD884wD0K3BO4JgHjwBARlEVASQRbHSQRnaEJiQaOMpPz81EMkUsEu0ZX3WwAap0AnaLtsd67b6xI_9iFoVzUHvN4F05pvFUxn8aypO2fCpsVV5_CTCgq_NarQrbYBK1vi92Kjy74xtsbG4kVZazzv2l0fjpOF3RvX2SPsr9FFpRqvb37rFH0-Lz7mr9Fq_bKcz1ZRwRIRIpGzglQJEZrwNOYlMB2zPMnLJCdpRpNKAS0J5FoLCgoyzlNWlSyjTPACCs2m6G7cOzz21Wsf5LbrnR1OShoDixkHng0UHanCdd47XcmdM61yB0lAHp3K0akcnMqTUwlDiI0hP8C21u5v9T-pH1MRemQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503534049</pqid></control><display><type>article</type><title>Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments</title><source>SpringerNature Journals</source><creator>Hosseinzadeh, Mehdi ; Masdari, Mohammad ; Rahmani, Amir Masoud ; Mohammadi, Mokhtar ; Aldalwie, Adil Hussain Mohammed ; Majeed, Mohammed Kamal ; Karim, Sarkhel H. Taher</creator><creatorcontrib>Hosseinzadeh, Mehdi ; Masdari, Mohammad ; Rahmani, Amir Masoud ; Mohammadi, Mokhtar ; Aldalwie, Adil Hussain Mohammed ; Majeed, Mohammed Kamal ; Karim, Sarkhel H. Taher</creatorcontrib><description>Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process that tries to map tasks to the most proper set of resources based on some objectives. This paper presents DBOA, a discrete version of the Butterfly Optimization Algorithm (BOA) that applies the Levy flight method to improve its convergence speed and prevent local optima problems. We also employed a task prioritization method to find the task execution order in the scientific workflows. Then, we use DBOA for Dynamic Voltage and Frequency Scaling or DVFS-based data-intensive workflow scheduling and data placement in MEC environments. For evaluating the performance of the proposed scheduling scheme, extensive simulations are conducted on various well-known scientific workflows with different sizes. The obtained experimental results indicate that our method can outperform other algorithms in terms of energy consumption, data access overheads, and so on.</description><identifier>ISSN: 1570-7873</identifier><identifier>EISSN: 1572-9184</identifier><identifier>DOI: 10.1007/s10723-021-09556-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Computer Science ; Edge computing ; Electronic devices ; Energy consumption ; Management of Computing and Information Systems ; Mobile computing ; Optimization ; Optimization algorithms ; Placement ; Processor Architectures ; Resource scheduling ; Scheduling ; Task scheduling ; User Interfaces and Human Computer Interaction ; Workflow</subject><ispartof>Journal of grid computing, 2021-06, Vol.19 (2), Article 14</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-7b3c1f617e14854d03e53b6bd6b18926fa02d10bee720a094483fd392374c0ce3</citedby><cites>FETCH-LOGICAL-c367t-7b3c1f617e14854d03e53b6bd6b18926fa02d10bee720a094483fd392374c0ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10723-021-09556-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10723-021-09556-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hosseinzadeh, Mehdi</creatorcontrib><creatorcontrib>Masdari, Mohammad</creatorcontrib><creatorcontrib>Rahmani, Amir Masoud</creatorcontrib><creatorcontrib>Mohammadi, Mokhtar</creatorcontrib><creatorcontrib>Aldalwie, Adil Hussain Mohammed</creatorcontrib><creatorcontrib>Majeed, Mohammed Kamal</creatorcontrib><creatorcontrib>Karim, Sarkhel H. Taher</creatorcontrib><title>Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments</title><title>Journal of grid computing</title><addtitle>J Grid Computing</addtitle><description>Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process that tries to map tasks to the most proper set of resources based on some objectives. This paper presents DBOA, a discrete version of the Butterfly Optimization Algorithm (BOA) that applies the Levy flight method to improve its convergence speed and prevent local optima problems. We also employed a task prioritization method to find the task execution order in the scientific workflows. Then, we use DBOA for Dynamic Voltage and Frequency Scaling or DVFS-based data-intensive workflow scheduling and data placement in MEC environments. For evaluating the performance of the proposed scheduling scheme, extensive simulations are conducted on various well-known scientific workflows with different sizes. The obtained experimental results indicate that our method can outperform other algorithms in terms of energy consumption, data access overheads, and so on.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Management of Computing and Information Systems</subject><subject>Mobile computing</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Placement</subject><subject>Processor Architectures</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Task scheduling</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Workflow</subject><issn>1570-7873</issn><issn>1572-9184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9HZj2STY61VC4UK6nnZJJt0S7Kpu5tC_fWmjeDN0wzD884wD0K3BO4JgHjwBARlEVASQRbHSQRnaEJiQaOMpPz81EMkUsEu0ZX3WwAap0AnaLtsd67b6xI_9iFoVzUHvN4F05pvFUxn8aypO2fCpsVV5_CTCgq_NarQrbYBK1vi92Kjy74xtsbG4kVZazzv2l0fjpOF3RvX2SPsr9FFpRqvb37rFH0-Lz7mr9Fq_bKcz1ZRwRIRIpGzglQJEZrwNOYlMB2zPMnLJCdpRpNKAS0J5FoLCgoyzlNWlSyjTPACCs2m6G7cOzz21Wsf5LbrnR1OShoDixkHng0UHanCdd47XcmdM61yB0lAHp3K0akcnMqTUwlDiI0hP8C21u5v9T-pH1MRemQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Hosseinzadeh, Mehdi</creator><creator>Masdari, Mohammad</creator><creator>Rahmani, Amir Masoud</creator><creator>Mohammadi, Mokhtar</creator><creator>Aldalwie, Adil Hussain Mohammed</creator><creator>Majeed, Mohammed Kamal</creator><creator>Karim, Sarkhel H. Taher</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210601</creationdate><title>Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments</title><author>Hosseinzadeh, Mehdi ; Masdari, Mohammad ; Rahmani, Amir Masoud ; Mohammadi, Mokhtar ; Aldalwie, Adil Hussain Mohammed ; Majeed, Mohammed Kamal ; Karim, Sarkhel H. Taher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-7b3c1f617e14854d03e53b6bd6b18926fa02d10bee720a094483fd392374c0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Management of Computing and Information Systems</topic><topic>Mobile computing</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Placement</topic><topic>Processor Architectures</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Task scheduling</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Hosseinzadeh, Mehdi</creatorcontrib><creatorcontrib>Masdari, Mohammad</creatorcontrib><creatorcontrib>Rahmani, Amir Masoud</creatorcontrib><creatorcontrib>Mohammadi, Mokhtar</creatorcontrib><creatorcontrib>Aldalwie, Adil Hussain Mohammed</creatorcontrib><creatorcontrib>Majeed, Mohammed Kamal</creatorcontrib><creatorcontrib>Karim, Sarkhel H. Taher</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of grid computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinzadeh, Mehdi</au><au>Masdari, Mohammad</au><au>Rahmani, Amir Masoud</au><au>Mohammadi, Mokhtar</au><au>Aldalwie, Adil Hussain Mohammed</au><au>Majeed, Mohammed Kamal</au><au>Karim, Sarkhel H. Taher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments</atitle><jtitle>Journal of grid computing</jtitle><stitle>J Grid Computing</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>19</volume><issue>2</issue><artnum>14</artnum><issn>1570-7873</issn><eissn>1572-9184</eissn><abstract>Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process that tries to map tasks to the most proper set of resources based on some objectives. This paper presents DBOA, a discrete version of the Butterfly Optimization Algorithm (BOA) that applies the Levy flight method to improve its convergence speed and prevent local optima problems. We also employed a task prioritization method to find the task execution order in the scientific workflows. Then, we use DBOA for Dynamic Voltage and Frequency Scaling or DVFS-based data-intensive workflow scheduling and data placement in MEC environments. For evaluating the performance of the proposed scheduling scheme, extensive simulations are conducted on various well-known scientific workflows with different sizes. The obtained experimental results indicate that our method can outperform other algorithms in terms of energy consumption, data access overheads, and so on.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10723-021-09556-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-7873 |
ispartof | Journal of grid computing, 2021-06, Vol.19 (2), Article 14 |
issn | 1570-7873 1572-9184 |
language | eng |
recordid | cdi_proquest_journals_2503534049 |
source | SpringerNature Journals |
subjects | Algorithms Computer Science Edge computing Electronic devices Energy consumption Management of Computing and Information Systems Mobile computing Optimization Optimization algorithms Placement Processor Architectures Resource scheduling Scheduling Task scheduling User Interfaces and Human Computer Interaction Workflow |
title | Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Butterfly%20Optimization%20Algorithm%20for%20Data%20Placement%20and%20Scheduling%20in%20Edge%20Computing%20Environments&rft.jtitle=Journal%20of%20grid%20computing&rft.au=Hosseinzadeh,%20Mehdi&rft.date=2021-06-01&rft.volume=19&rft.issue=2&rft.artnum=14&rft.issn=1570-7873&rft.eissn=1572-9184&rft_id=info:doi/10.1007/s10723-021-09556-0&rft_dat=%3Cproquest_cross%3E2503534049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503534049&rft_id=info:pmid/&rfr_iscdi=true |