Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments

Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of grid computing 2021-06, Vol.19 (2), Article 14
Hauptverfasser: Hosseinzadeh, Mehdi, Masdari, Mohammad, Rahmani, Amir Masoud, Mohammadi, Mokhtar, Aldalwie, Adil Hussain Mohammed, Majeed, Mohammed Kamal, Karim, Sarkhel H. Taher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of grid computing
container_volume 19
creator Hosseinzadeh, Mehdi
Masdari, Mohammad
Rahmani, Amir Masoud
Mohammadi, Mokhtar
Aldalwie, Adil Hussain Mohammed
Majeed, Mohammed Kamal
Karim, Sarkhel H. Taher
description Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process that tries to map tasks to the most proper set of resources based on some objectives. This paper presents DBOA, a discrete version of the Butterfly Optimization Algorithm (BOA) that applies the Levy flight method to improve its convergence speed and prevent local optima problems. We also employed a task prioritization method to find the task execution order in the scientific workflows. Then, we use DBOA for Dynamic Voltage and Frequency Scaling or DVFS-based data-intensive workflow scheduling and data placement in MEC environments. For evaluating the performance of the proposed scheduling scheme, extensive simulations are conducted on various well-known scientific workflows with different sizes. The obtained experimental results indicate that our method can outperform other algorithms in terms of energy consumption, data access overheads, and so on.
doi_str_mv 10.1007/s10723-021-09556-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503534049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503534049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-7b3c1f617e14854d03e53b6bd6b18926fa02d10bee720a094483fd392374c0ce3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9HZj2STY61VC4UK6nnZJJt0S7Kpu5tC_fWmjeDN0wzD884wD0K3BO4JgHjwBARlEVASQRbHSQRnaEJiQaOMpPz81EMkUsEu0ZX3WwAap0AnaLtsd67b6xI_9iFoVzUHvN4F05pvFUxn8aypO2fCpsVV5_CTCgq_NarQrbYBK1vi92Kjy74xtsbG4kVZazzv2l0fjpOF3RvX2SPsr9FFpRqvb37rFH0-Lz7mr9Fq_bKcz1ZRwRIRIpGzglQJEZrwNOYlMB2zPMnLJCdpRpNKAS0J5FoLCgoyzlNWlSyjTPACCs2m6G7cOzz21Wsf5LbrnR1OShoDixkHng0UHanCdd47XcmdM61yB0lAHp3K0akcnMqTUwlDiI0hP8C21u5v9T-pH1MRemQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503534049</pqid></control><display><type>article</type><title>Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments</title><source>SpringerNature Journals</source><creator>Hosseinzadeh, Mehdi ; Masdari, Mohammad ; Rahmani, Amir Masoud ; Mohammadi, Mokhtar ; Aldalwie, Adil Hussain Mohammed ; Majeed, Mohammed Kamal ; Karim, Sarkhel H. Taher</creator><creatorcontrib>Hosseinzadeh, Mehdi ; Masdari, Mohammad ; Rahmani, Amir Masoud ; Mohammadi, Mokhtar ; Aldalwie, Adil Hussain Mohammed ; Majeed, Mohammed Kamal ; Karim, Sarkhel H. Taher</creatorcontrib><description>Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process that tries to map tasks to the most proper set of resources based on some objectives. This paper presents DBOA, a discrete version of the Butterfly Optimization Algorithm (BOA) that applies the Levy flight method to improve its convergence speed and prevent local optima problems. We also employed a task prioritization method to find the task execution order in the scientific workflows. Then, we use DBOA for Dynamic Voltage and Frequency Scaling or DVFS-based data-intensive workflow scheduling and data placement in MEC environments. For evaluating the performance of the proposed scheduling scheme, extensive simulations are conducted on various well-known scientific workflows with different sizes. The obtained experimental results indicate that our method can outperform other algorithms in terms of energy consumption, data access overheads, and so on.</description><identifier>ISSN: 1570-7873</identifier><identifier>EISSN: 1572-9184</identifier><identifier>DOI: 10.1007/s10723-021-09556-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Computer Science ; Edge computing ; Electronic devices ; Energy consumption ; Management of Computing and Information Systems ; Mobile computing ; Optimization ; Optimization algorithms ; Placement ; Processor Architectures ; Resource scheduling ; Scheduling ; Task scheduling ; User Interfaces and Human Computer Interaction ; Workflow</subject><ispartof>Journal of grid computing, 2021-06, Vol.19 (2), Article 14</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-7b3c1f617e14854d03e53b6bd6b18926fa02d10bee720a094483fd392374c0ce3</citedby><cites>FETCH-LOGICAL-c367t-7b3c1f617e14854d03e53b6bd6b18926fa02d10bee720a094483fd392374c0ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10723-021-09556-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10723-021-09556-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hosseinzadeh, Mehdi</creatorcontrib><creatorcontrib>Masdari, Mohammad</creatorcontrib><creatorcontrib>Rahmani, Amir Masoud</creatorcontrib><creatorcontrib>Mohammadi, Mokhtar</creatorcontrib><creatorcontrib>Aldalwie, Adil Hussain Mohammed</creatorcontrib><creatorcontrib>Majeed, Mohammed Kamal</creatorcontrib><creatorcontrib>Karim, Sarkhel H. Taher</creatorcontrib><title>Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments</title><title>Journal of grid computing</title><addtitle>J Grid Computing</addtitle><description>Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process that tries to map tasks to the most proper set of resources based on some objectives. This paper presents DBOA, a discrete version of the Butterfly Optimization Algorithm (BOA) that applies the Levy flight method to improve its convergence speed and prevent local optima problems. We also employed a task prioritization method to find the task execution order in the scientific workflows. Then, we use DBOA for Dynamic Voltage and Frequency Scaling or DVFS-based data-intensive workflow scheduling and data placement in MEC environments. For evaluating the performance of the proposed scheduling scheme, extensive simulations are conducted on various well-known scientific workflows with different sizes. The obtained experimental results indicate that our method can outperform other algorithms in terms of energy consumption, data access overheads, and so on.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Management of Computing and Information Systems</subject><subject>Mobile computing</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Placement</subject><subject>Processor Architectures</subject><subject>Resource scheduling</subject><subject>Scheduling</subject><subject>Task scheduling</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Workflow</subject><issn>1570-7873</issn><issn>1572-9184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9HZj2STY61VC4UK6nnZJJt0S7Kpu5tC_fWmjeDN0wzD884wD0K3BO4JgHjwBARlEVASQRbHSQRnaEJiQaOMpPz81EMkUsEu0ZX3WwAap0AnaLtsd67b6xI_9iFoVzUHvN4F05pvFUxn8aypO2fCpsVV5_CTCgq_NarQrbYBK1vi92Kjy74xtsbG4kVZazzv2l0fjpOF3RvX2SPsr9FFpRqvb37rFH0-Lz7mr9Fq_bKcz1ZRwRIRIpGzglQJEZrwNOYlMB2zPMnLJCdpRpNKAS0J5FoLCgoyzlNWlSyjTPACCs2m6G7cOzz21Wsf5LbrnR1OShoDixkHng0UHanCdd47XcmdM61yB0lAHp3K0akcnMqTUwlDiI0hP8C21u5v9T-pH1MRemQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Hosseinzadeh, Mehdi</creator><creator>Masdari, Mohammad</creator><creator>Rahmani, Amir Masoud</creator><creator>Mohammadi, Mokhtar</creator><creator>Aldalwie, Adil Hussain Mohammed</creator><creator>Majeed, Mohammed Kamal</creator><creator>Karim, Sarkhel H. Taher</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210601</creationdate><title>Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments</title><author>Hosseinzadeh, Mehdi ; Masdari, Mohammad ; Rahmani, Amir Masoud ; Mohammadi, Mokhtar ; Aldalwie, Adil Hussain Mohammed ; Majeed, Mohammed Kamal ; Karim, Sarkhel H. Taher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-7b3c1f617e14854d03e53b6bd6b18926fa02d10bee720a094483fd392374c0ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Management of Computing and Information Systems</topic><topic>Mobile computing</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Placement</topic><topic>Processor Architectures</topic><topic>Resource scheduling</topic><topic>Scheduling</topic><topic>Task scheduling</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Hosseinzadeh, Mehdi</creatorcontrib><creatorcontrib>Masdari, Mohammad</creatorcontrib><creatorcontrib>Rahmani, Amir Masoud</creatorcontrib><creatorcontrib>Mohammadi, Mokhtar</creatorcontrib><creatorcontrib>Aldalwie, Adil Hussain Mohammed</creatorcontrib><creatorcontrib>Majeed, Mohammed Kamal</creatorcontrib><creatorcontrib>Karim, Sarkhel H. Taher</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of grid computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseinzadeh, Mehdi</au><au>Masdari, Mohammad</au><au>Rahmani, Amir Masoud</au><au>Mohammadi, Mokhtar</au><au>Aldalwie, Adil Hussain Mohammed</au><au>Majeed, Mohammed Kamal</au><au>Karim, Sarkhel H. Taher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments</atitle><jtitle>Journal of grid computing</jtitle><stitle>J Grid Computing</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>19</volume><issue>2</issue><artnum>14</artnum><issn>1570-7873</issn><eissn>1572-9184</eissn><abstract>Mobile edge computing (MEC) is an interesting technology aimed at providing various processing and storage resources at the edge of mobile devices (MDs). However, MECs contain limited resources, and they should be appropriately managed to prevent resource wastage. Workflow scheduling is a process that tries to map tasks to the most proper set of resources based on some objectives. This paper presents DBOA, a discrete version of the Butterfly Optimization Algorithm (BOA) that applies the Levy flight method to improve its convergence speed and prevent local optima problems. We also employed a task prioritization method to find the task execution order in the scientific workflows. Then, we use DBOA for Dynamic Voltage and Frequency Scaling or DVFS-based data-intensive workflow scheduling and data placement in MEC environments. For evaluating the performance of the proposed scheduling scheme, extensive simulations are conducted on various well-known scientific workflows with different sizes. The obtained experimental results indicate that our method can outperform other algorithms in terms of energy consumption, data access overheads, and so on.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10723-021-09556-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 1570-7873
ispartof Journal of grid computing, 2021-06, Vol.19 (2), Article 14
issn 1570-7873
1572-9184
language eng
recordid cdi_proquest_journals_2503534049
source SpringerNature Journals
subjects Algorithms
Computer Science
Edge computing
Electronic devices
Energy consumption
Management of Computing and Information Systems
Mobile computing
Optimization
Optimization algorithms
Placement
Processor Architectures
Resource scheduling
Scheduling
Task scheduling
User Interfaces and Human Computer Interaction
Workflow
title Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Butterfly%20Optimization%20Algorithm%20for%20Data%20Placement%20and%20Scheduling%20in%20Edge%20Computing%20Environments&rft.jtitle=Journal%20of%20grid%20computing&rft.au=Hosseinzadeh,%20Mehdi&rft.date=2021-06-01&rft.volume=19&rft.issue=2&rft.artnum=14&rft.issn=1570-7873&rft.eissn=1572-9184&rft_id=info:doi/10.1007/s10723-021-09556-0&rft_dat=%3Cproquest_cross%3E2503534049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503534049&rft_id=info:pmid/&rfr_iscdi=true