Creative idea generation method based on deep learning technology
Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we rep...
Gespeichert in:
Veröffentlicht in: | International journal of technology and design education 2021-04, Vol.31 (2), p.421-440 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 440 |
---|---|
container_issue | 2 |
container_start_page | 421 |
container_title | International journal of technology and design education |
container_volume | 31 |
creator | Zhao, Tianjiao Yang, Junyu Zhang, Hechen Siu, Kin Wai Michael |
description | Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we report a creative idea generation method based on deep learning technology. Firstly, we identified the most effective point for presenting image stimuli for inspiration. Then we used artificial selection to construct a substantial database of highly creative image stimuli. Based on the selected images, we used canonical correlation analysis and convolutional neural networks to learn two projections to search for highly creative images in a logo database. The proposed method combines design theory and computational techniques, providing a new creative design thinking method for identifying appropriate stimuli in large databases. |
doi_str_mv | 10.1007/s10798-019-09556-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503532408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1292092</ericid><sourcerecordid>2503532408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-9bf299f8027c3eb9883eceed3698fce71e2e5e2e51fdeefc28f5eef1d1e670013</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BQQh4juaj2STHUuoXBS96DrvZyXZLu6nJVth_b-qK3jwMw8yb997wELpm9I5Rqu4To8poQpkh1EhZkOEETZhUgjBNZ6dokreKKKn4ObpIaUMpK7iWEzRfRCj79hNwW0OJG-gg5jl0eAf9OtS4KhPUOM81wB5voYxd2zW4B7fuwjY0wyU68-U2wdVPn6L3h-Xb4omsXh-fF_MVcWLGemIqz43xmnLlBFRGawEOoBaF0d6BYsBBHov57OQd117mzmoGhcrviim6HXX3MXwcIPV2Ew6xy5aWSyqk4DOq8xUfr1wMKUXwdh_bXRkHy6g9RmXHqGyOyn5HZYdMuhlJEFv3S1i-MG44NTzjYsRTxroG4p_1P6pf-wZ28A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503532408</pqid></control><display><type>article</type><title>Creative idea generation method based on deep learning technology</title><source>SpringerLink Journals</source><source>Education Source</source><creator>Zhao, Tianjiao ; Yang, Junyu ; Zhang, Hechen ; Siu, Kin Wai Michael</creator><creatorcontrib>Zhao, Tianjiao ; Yang, Junyu ; Zhang, Hechen ; Siu, Kin Wai Michael</creatorcontrib><description>Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we report a creative idea generation method based on deep learning technology. Firstly, we identified the most effective point for presenting image stimuli for inspiration. Then we used artificial selection to construct a substantial database of highly creative image stimuli. Based on the selected images, we used canonical correlation analysis and convolutional neural networks to learn two projections to search for highly creative images in a logo database. The proposed method combines design theory and computational techniques, providing a new creative design thinking method for identifying appropriate stimuli in large databases.</description><identifier>ISSN: 0957-7572</identifier><identifier>EISSN: 1573-1804</identifier><identifier>DOI: 10.1007/s10798-019-09556-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Concept Formation ; Correlation analysis ; Creative Thinking ; Creativity ; Deep learning ; Design ; Design thinking ; Education ; Educational Technology ; Innovations ; Inspiration ; Learning and Instruction ; Science Education ; Stimuli</subject><ispartof>International journal of technology and design education, 2021-04, Vol.31 (2), p.421-440</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-9bf299f8027c3eb9883eceed3698fce71e2e5e2e51fdeefc28f5eef1d1e670013</citedby><cites>FETCH-LOGICAL-c341t-9bf299f8027c3eb9883eceed3698fce71e2e5e2e51fdeefc28f5eef1d1e670013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10798-019-09556-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10798-019-09556-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1292092$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Tianjiao</creatorcontrib><creatorcontrib>Yang, Junyu</creatorcontrib><creatorcontrib>Zhang, Hechen</creatorcontrib><creatorcontrib>Siu, Kin Wai Michael</creatorcontrib><title>Creative idea generation method based on deep learning technology</title><title>International journal of technology and design education</title><addtitle>Int J Technol Des Educ</addtitle><description>Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we report a creative idea generation method based on deep learning technology. Firstly, we identified the most effective point for presenting image stimuli for inspiration. Then we used artificial selection to construct a substantial database of highly creative image stimuli. Based on the selected images, we used canonical correlation analysis and convolutional neural networks to learn two projections to search for highly creative images in a logo database. The proposed method combines design theory and computational techniques, providing a new creative design thinking method for identifying appropriate stimuli in large databases.</description><subject>Artificial neural networks</subject><subject>Concept Formation</subject><subject>Correlation analysis</subject><subject>Creative Thinking</subject><subject>Creativity</subject><subject>Deep learning</subject><subject>Design</subject><subject>Design thinking</subject><subject>Education</subject><subject>Educational Technology</subject><subject>Innovations</subject><subject>Inspiration</subject><subject>Learning and Instruction</subject><subject>Science Education</subject><subject>Stimuli</subject><issn>0957-7572</issn><issn>1573-1804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BQQh4juaj2STHUuoXBS96DrvZyXZLu6nJVth_b-qK3jwMw8yb997wELpm9I5Rqu4To8poQpkh1EhZkOEETZhUgjBNZ6dokreKKKn4ObpIaUMpK7iWEzRfRCj79hNwW0OJG-gg5jl0eAf9OtS4KhPUOM81wB5voYxd2zW4B7fuwjY0wyU68-U2wdVPn6L3h-Xb4omsXh-fF_MVcWLGemIqz43xmnLlBFRGawEOoBaF0d6BYsBBHov57OQd117mzmoGhcrviim6HXX3MXwcIPV2Ew6xy5aWSyqk4DOq8xUfr1wMKUXwdh_bXRkHy6g9RmXHqGyOyn5HZYdMuhlJEFv3S1i-MG44NTzjYsRTxroG4p_1P6pf-wZ28A</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhao, Tianjiao</creator><creator>Yang, Junyu</creator><creator>Zhang, Hechen</creator><creator>Siu, Kin Wai Michael</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>F29</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>JG9</scope><scope>KR7</scope><scope>M0P</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210401</creationdate><title>Creative idea generation method based on deep learning technology</title><author>Zhao, Tianjiao ; Yang, Junyu ; Zhang, Hechen ; Siu, Kin Wai Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-9bf299f8027c3eb9883eceed3698fce71e2e5e2e51fdeefc28f5eef1d1e670013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Concept Formation</topic><topic>Correlation analysis</topic><topic>Creative Thinking</topic><topic>Creativity</topic><topic>Deep learning</topic><topic>Design</topic><topic>Design thinking</topic><topic>Education</topic><topic>Educational Technology</topic><topic>Innovations</topic><topic>Inspiration</topic><topic>Learning and Instruction</topic><topic>Science Education</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianjiao</creatorcontrib><creatorcontrib>Yang, Junyu</creatorcontrib><creatorcontrib>Zhang, Hechen</creatorcontrib><creatorcontrib>Siu, Kin Wai Michael</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Design & Applied Arts Index (DAAI)</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Education Database</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of technology and design education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianjiao</au><au>Yang, Junyu</au><au>Zhang, Hechen</au><au>Siu, Kin Wai Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1292092</ericid><atitle>Creative idea generation method based on deep learning technology</atitle><jtitle>International journal of technology and design education</jtitle><stitle>Int J Technol Des Educ</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>421</spage><epage>440</epage><pages>421-440</pages><issn>0957-7572</issn><eissn>1573-1804</eissn><abstract>Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we report a creative idea generation method based on deep learning technology. Firstly, we identified the most effective point for presenting image stimuli for inspiration. Then we used artificial selection to construct a substantial database of highly creative image stimuli. Based on the selected images, we used canonical correlation analysis and convolutional neural networks to learn two projections to search for highly creative images in a logo database. The proposed method combines design theory and computational techniques, providing a new creative design thinking method for identifying appropriate stimuli in large databases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10798-019-09556-y</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-7572 |
ispartof | International journal of technology and design education, 2021-04, Vol.31 (2), p.421-440 |
issn | 0957-7572 1573-1804 |
language | eng |
recordid | cdi_proquest_journals_2503532408 |
source | SpringerLink Journals; Education Source |
subjects | Artificial neural networks Concept Formation Correlation analysis Creative Thinking Creativity Deep learning Design Design thinking Education Educational Technology Innovations Inspiration Learning and Instruction Science Education Stimuli |
title | Creative idea generation method based on deep learning technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creative%20idea%20generation%20method%20based%20on%20deep%20learning%20technology&rft.jtitle=International%20journal%20of%20technology%20and%20design%20education&rft.au=Zhao,%20Tianjiao&rft.date=2021-04-01&rft.volume=31&rft.issue=2&rft.spage=421&rft.epage=440&rft.pages=421-440&rft.issn=0957-7572&rft.eissn=1573-1804&rft_id=info:doi/10.1007/s10798-019-09556-y&rft_dat=%3Cproquest_cross%3E2503532408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503532408&rft_id=info:pmid/&rft_ericid=EJ1292092&rfr_iscdi=true |