Creative idea generation method based on deep learning technology

Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of technology and design education 2021-04, Vol.31 (2), p.421-440
Hauptverfasser: Zhao, Tianjiao, Yang, Junyu, Zhang, Hechen, Siu, Kin Wai Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 2
container_start_page 421
container_title International journal of technology and design education
container_volume 31
creator Zhao, Tianjiao
Yang, Junyu
Zhang, Hechen
Siu, Kin Wai Michael
description Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we report a creative idea generation method based on deep learning technology. Firstly, we identified the most effective point for presenting image stimuli for inspiration. Then we used artificial selection to construct a substantial database of highly creative image stimuli. Based on the selected images, we used canonical correlation analysis and convolutional neural networks to learn two projections to search for highly creative images in a logo database. The proposed method combines design theory and computational techniques, providing a new creative design thinking method for identifying appropriate stimuli in large databases.
doi_str_mv 10.1007/s10798-019-09556-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503532408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1292092</ericid><sourcerecordid>2503532408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-9bf299f8027c3eb9883eceed3698fce71e2e5e2e51fdeefc28f5eef1d1e670013</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BQQh4juaj2STHUuoXBS96DrvZyXZLu6nJVth_b-qK3jwMw8yb997wELpm9I5Rqu4To8poQpkh1EhZkOEETZhUgjBNZ6dokreKKKn4ObpIaUMpK7iWEzRfRCj79hNwW0OJG-gg5jl0eAf9OtS4KhPUOM81wB5voYxd2zW4B7fuwjY0wyU68-U2wdVPn6L3h-Xb4omsXh-fF_MVcWLGemIqz43xmnLlBFRGawEOoBaF0d6BYsBBHov57OQd117mzmoGhcrviim6HXX3MXwcIPV2Ew6xy5aWSyqk4DOq8xUfr1wMKUXwdh_bXRkHy6g9RmXHqGyOyn5HZYdMuhlJEFv3S1i-MG44NTzjYsRTxroG4p_1P6pf-wZ28A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503532408</pqid></control><display><type>article</type><title>Creative idea generation method based on deep learning technology</title><source>SpringerLink Journals</source><source>Education Source</source><creator>Zhao, Tianjiao ; Yang, Junyu ; Zhang, Hechen ; Siu, Kin Wai Michael</creator><creatorcontrib>Zhao, Tianjiao ; Yang, Junyu ; Zhang, Hechen ; Siu, Kin Wai Michael</creatorcontrib><description>Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we report a creative idea generation method based on deep learning technology. Firstly, we identified the most effective point for presenting image stimuli for inspiration. Then we used artificial selection to construct a substantial database of highly creative image stimuli. Based on the selected images, we used canonical correlation analysis and convolutional neural networks to learn two projections to search for highly creative images in a logo database. The proposed method combines design theory and computational techniques, providing a new creative design thinking method for identifying appropriate stimuli in large databases.</description><identifier>ISSN: 0957-7572</identifier><identifier>EISSN: 1573-1804</identifier><identifier>DOI: 10.1007/s10798-019-09556-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Concept Formation ; Correlation analysis ; Creative Thinking ; Creativity ; Deep learning ; Design ; Design thinking ; Education ; Educational Technology ; Innovations ; Inspiration ; Learning and Instruction ; Science Education ; Stimuli</subject><ispartof>International journal of technology and design education, 2021-04, Vol.31 (2), p.421-440</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-9bf299f8027c3eb9883eceed3698fce71e2e5e2e51fdeefc28f5eef1d1e670013</citedby><cites>FETCH-LOGICAL-c341t-9bf299f8027c3eb9883eceed3698fce71e2e5e2e51fdeefc28f5eef1d1e670013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10798-019-09556-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10798-019-09556-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1292092$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Tianjiao</creatorcontrib><creatorcontrib>Yang, Junyu</creatorcontrib><creatorcontrib>Zhang, Hechen</creatorcontrib><creatorcontrib>Siu, Kin Wai Michael</creatorcontrib><title>Creative idea generation method based on deep learning technology</title><title>International journal of technology and design education</title><addtitle>Int J Technol Des Educ</addtitle><description>Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we report a creative idea generation method based on deep learning technology. Firstly, we identified the most effective point for presenting image stimuli for inspiration. Then we used artificial selection to construct a substantial database of highly creative image stimuli. Based on the selected images, we used canonical correlation analysis and convolutional neural networks to learn two projections to search for highly creative images in a logo database. The proposed method combines design theory and computational techniques, providing a new creative design thinking method for identifying appropriate stimuli in large databases.</description><subject>Artificial neural networks</subject><subject>Concept Formation</subject><subject>Correlation analysis</subject><subject>Creative Thinking</subject><subject>Creativity</subject><subject>Deep learning</subject><subject>Design</subject><subject>Design thinking</subject><subject>Education</subject><subject>Educational Technology</subject><subject>Innovations</subject><subject>Inspiration</subject><subject>Learning and Instruction</subject><subject>Science Education</subject><subject>Stimuli</subject><issn>0957-7572</issn><issn>1573-1804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BQQh4juaj2STHUuoXBS96DrvZyXZLu6nJVth_b-qK3jwMw8yb997wELpm9I5Rqu4To8poQpkh1EhZkOEETZhUgjBNZ6dokreKKKn4ObpIaUMpK7iWEzRfRCj79hNwW0OJG-gg5jl0eAf9OtS4KhPUOM81wB5voYxd2zW4B7fuwjY0wyU68-U2wdVPn6L3h-Xb4omsXh-fF_MVcWLGemIqz43xmnLlBFRGawEOoBaF0d6BYsBBHov57OQd117mzmoGhcrviim6HXX3MXwcIPV2Ew6xy5aWSyqk4DOq8xUfr1wMKUXwdh_bXRkHy6g9RmXHqGyOyn5HZYdMuhlJEFv3S1i-MG44NTzjYsRTxroG4p_1P6pf-wZ28A</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhao, Tianjiao</creator><creator>Yang, Junyu</creator><creator>Zhang, Hechen</creator><creator>Siu, Kin Wai Michael</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>F29</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>JG9</scope><scope>KR7</scope><scope>M0P</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210401</creationdate><title>Creative idea generation method based on deep learning technology</title><author>Zhao, Tianjiao ; Yang, Junyu ; Zhang, Hechen ; Siu, Kin Wai Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-9bf299f8027c3eb9883eceed3698fce71e2e5e2e51fdeefc28f5eef1d1e670013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Concept Formation</topic><topic>Correlation analysis</topic><topic>Creative Thinking</topic><topic>Creativity</topic><topic>Deep learning</topic><topic>Design</topic><topic>Design thinking</topic><topic>Education</topic><topic>Educational Technology</topic><topic>Innovations</topic><topic>Inspiration</topic><topic>Learning and Instruction</topic><topic>Science Education</topic><topic>Stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianjiao</creatorcontrib><creatorcontrib>Yang, Junyu</creatorcontrib><creatorcontrib>Zhang, Hechen</creatorcontrib><creatorcontrib>Siu, Kin Wai Michael</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Design &amp; Applied Arts Index (DAAI)</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Education Database</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of technology and design education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianjiao</au><au>Yang, Junyu</au><au>Zhang, Hechen</au><au>Siu, Kin Wai Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1292092</ericid><atitle>Creative idea generation method based on deep learning technology</atitle><jtitle>International journal of technology and design education</jtitle><stitle>Int J Technol Des Educ</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>2</issue><spage>421</spage><epage>440</epage><pages>421-440</pages><issn>0957-7572</issn><eissn>1573-1804</eissn><abstract>Generating creative ideas is critical in the design process. Currently, massive amounts of design data are existing and effective use of data can stimulate inspiration. However, there has been relatively little research on large-scale design image materials and creative knowledge mining. Here we report a creative idea generation method based on deep learning technology. Firstly, we identified the most effective point for presenting image stimuli for inspiration. Then we used artificial selection to construct a substantial database of highly creative image stimuli. Based on the selected images, we used canonical correlation analysis and convolutional neural networks to learn two projections to search for highly creative images in a logo database. The proposed method combines design theory and computational techniques, providing a new creative design thinking method for identifying appropriate stimuli in large databases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10798-019-09556-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-7572
ispartof International journal of technology and design education, 2021-04, Vol.31 (2), p.421-440
issn 0957-7572
1573-1804
language eng
recordid cdi_proquest_journals_2503532408
source SpringerLink Journals; Education Source
subjects Artificial neural networks
Concept Formation
Correlation analysis
Creative Thinking
Creativity
Deep learning
Design
Design thinking
Education
Educational Technology
Innovations
Inspiration
Learning and Instruction
Science Education
Stimuli
title Creative idea generation method based on deep learning technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creative%20idea%20generation%20method%20based%20on%20deep%20learning%20technology&rft.jtitle=International%20journal%20of%20technology%20and%20design%20education&rft.au=Zhao,%20Tianjiao&rft.date=2021-04-01&rft.volume=31&rft.issue=2&rft.spage=421&rft.epage=440&rft.pages=421-440&rft.issn=0957-7572&rft.eissn=1573-1804&rft_id=info:doi/10.1007/s10798-019-09556-y&rft_dat=%3Cproquest_cross%3E2503532408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503532408&rft_id=info:pmid/&rft_ericid=EJ1292092&rfr_iscdi=true