Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration

Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation, but limited by everchanging thicknesses arising from unstable interfaces. Herein, an interfacially stable, thermo-responsive nanosheet membrane is assembled from twin-chain stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2020-11, Vol.13 (11), p.2973-2978
Hauptverfasser: Jia, Wei, Wu, Baohu, Sun, Shengtong, Wu, Peiyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2978
container_issue 11
container_start_page 2973
container_title Nano research
container_volume 13
creator Jia, Wei
Wu, Baohu
Sun, Shengtong
Wu, Peiyi
description Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation, but limited by everchanging thicknesses arising from unstable interfaces. Herein, an interfacially stable, thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework (MOF) nanosheets, which function via two cyclic amide-bearing polymers, thermo-responsive poly(N-vinyl caprolactam) (PVCL) for adjusting channel size, and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance. Owing to the microporosity of MOF nanosheets and controllable interface wettability, the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness. Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.
doi_str_mv 10.1007/s12274-020-2959-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503532204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440211582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a7337cc7f62e3d1624cc433e9d42e27898a9fc27a67abd2ca59b47e5628736bd3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhiMEElD4AWyWmAP22YmTEVV8VAKxwGxdnAtNldrFdkH996QtiAluuRue973hybILwa8E5_o6CgCtcg48h7qo8_IgOxF1XeV8nMOfW4A6zk5jXHBeglDVSbaZuUShQ9vjMGxYTNgMxJ6e75hD5-OcKLElLZuAjthnn-YsYT_4QO0OsHN0jobIOh_YekgBO4yJoWtZmlNY-jxQXHkX-w_aBbp-C6Xeu7PsqMMh0vn3nmSvd7cv04f88fl-Nr15zK1UKuWopdTW6q4Ekq0oQVmrpKS6VUCgq7rCurOgsdTYtGCxqBulqSih0rJsWjnJLve9q-Df1xSTWfh1cONLAwWXhQTg6l9KKQ5CFBWMlNhTNvgYA3VmFfolho0R3Gw9mL0HM3owWw-mHDOwz8SRdW8Ufpv_Dn0BbP6Msg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440211582</pqid></control><display><type>article</type><title>Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jia, Wei ; Wu, Baohu ; Sun, Shengtong ; Wu, Peiyi</creator><creatorcontrib>Jia, Wei ; Wu, Baohu ; Sun, Shengtong ; Wu, Peiyi</creatorcontrib><description>Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation, but limited by everchanging thicknesses arising from unstable interfaces. Herein, an interfacially stable, thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework (MOF) nanosheets, which function via two cyclic amide-bearing polymers, thermo-responsive poly(N-vinyl caprolactam) (PVCL) for adjusting channel size, and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance. Owing to the microporosity of MOF nanosheets and controllable interface wettability, the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness. Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-2959-6</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Caprolactam ; Chemistry and Materials Science ; Condensed Matter Physics ; Correlation analysis ; Dehydration ; Graphene ; Interfaces ; Interlayers ; Laboratories ; Mass transfer ; Materials Science ; Membranes ; Metal-organic frameworks ; Microenvironments ; Microporosity ; Nanochannels ; Nanofiltration ; Nanosheets ; Nanotechnology ; Poly(N-vinyl caprolactam) ; Polymers ; Polyvinylpyrrolidone ; Research Article ; Scanning electron microscopy ; Separation ; Stability ; Thickness ; Wettability</subject><ispartof>Nano research, 2020-11, Vol.13 (11), p.2973-2978</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a7337cc7f62e3d1624cc433e9d42e27898a9fc27a67abd2ca59b47e5628736bd3</citedby><cites>FETCH-LOGICAL-c344t-a7337cc7f62e3d1624cc433e9d42e27898a9fc27a67abd2ca59b47e5628736bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-2959-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-2959-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Wu, Baohu</creatorcontrib><creatorcontrib>Sun, Shengtong</creatorcontrib><creatorcontrib>Wu, Peiyi</creatorcontrib><title>Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation, but limited by everchanging thicknesses arising from unstable interfaces. Herein, an interfacially stable, thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework (MOF) nanosheets, which function via two cyclic amide-bearing polymers, thermo-responsive poly(N-vinyl caprolactam) (PVCL) for adjusting channel size, and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance. Owing to the microporosity of MOF nanosheets and controllable interface wettability, the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness. Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Caprolactam</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Correlation analysis</subject><subject>Dehydration</subject><subject>Graphene</subject><subject>Interfaces</subject><subject>Interlayers</subject><subject>Laboratories</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Membranes</subject><subject>Metal-organic frameworks</subject><subject>Microenvironments</subject><subject>Microporosity</subject><subject>Nanochannels</subject><subject>Nanofiltration</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Poly(N-vinyl caprolactam)</subject><subject>Polymers</subject><subject>Polyvinylpyrrolidone</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>Separation</subject><subject>Stability</subject><subject>Thickness</subject><subject>Wettability</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kT1PwzAQhiMEElD4AWyWmAP22YmTEVV8VAKxwGxdnAtNldrFdkH996QtiAluuRue973hybILwa8E5_o6CgCtcg48h7qo8_IgOxF1XeV8nMOfW4A6zk5jXHBeglDVSbaZuUShQ9vjMGxYTNgMxJ6e75hD5-OcKLElLZuAjthnn-YsYT_4QO0OsHN0jobIOh_YekgBO4yJoWtZmlNY-jxQXHkX-w_aBbp-C6Xeu7PsqMMh0vn3nmSvd7cv04f88fl-Nr15zK1UKuWopdTW6q4Ekq0oQVmrpKS6VUCgq7rCurOgsdTYtGCxqBulqSih0rJsWjnJLve9q-Df1xSTWfh1cONLAwWXhQTg6l9KKQ5CFBWMlNhTNvgYA3VmFfolho0R3Gw9mL0HM3owWw-mHDOwz8SRdW8Ufpv_Dn0BbP6Msg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Jia, Wei</creator><creator>Wu, Baohu</creator><creator>Sun, Shengtong</creator><creator>Wu, Peiyi</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201101</creationdate><title>Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration</title><author>Jia, Wei ; Wu, Baohu ; Sun, Shengtong ; Wu, Peiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a7337cc7f62e3d1624cc433e9d42e27898a9fc27a67abd2ca59b47e5628736bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Caprolactam</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Correlation analysis</topic><topic>Dehydration</topic><topic>Graphene</topic><topic>Interfaces</topic><topic>Interlayers</topic><topic>Laboratories</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Membranes</topic><topic>Metal-organic frameworks</topic><topic>Microenvironments</topic><topic>Microporosity</topic><topic>Nanochannels</topic><topic>Nanofiltration</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Poly(N-vinyl caprolactam)</topic><topic>Polymers</topic><topic>Polyvinylpyrrolidone</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>Separation</topic><topic>Stability</topic><topic>Thickness</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Wei</creatorcontrib><creatorcontrib>Wu, Baohu</creatorcontrib><creatorcontrib>Sun, Shengtong</creatorcontrib><creatorcontrib>Wu, Peiyi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Wei</au><au>Wu, Baohu</au><au>Sun, Shengtong</au><au>Wu, Peiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>13</volume><issue>11</issue><spage>2973</spage><epage>2978</epage><pages>2973-2978</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation, but limited by everchanging thicknesses arising from unstable interfaces. Herein, an interfacially stable, thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework (MOF) nanosheets, which function via two cyclic amide-bearing polymers, thermo-responsive poly(N-vinyl caprolactam) (PVCL) for adjusting channel size, and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance. Owing to the microporosity of MOF nanosheets and controllable interface wettability, the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness. Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-020-2959-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2020-11, Vol.13 (11), p.2973-2978
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2503532204
source SpringerLink Journals - AutoHoldings
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Caprolactam
Chemistry and Materials Science
Condensed Matter Physics
Correlation analysis
Dehydration
Graphene
Interfaces
Interlayers
Laboratories
Mass transfer
Materials Science
Membranes
Metal-organic frameworks
Microenvironments
Microporosity
Nanochannels
Nanofiltration
Nanosheets
Nanotechnology
Poly(N-vinyl caprolactam)
Polymers
Polyvinylpyrrolidone
Research Article
Scanning electron microscopy
Separation
Stability
Thickness
Wettability
title Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacially%20stable%20MOF%20nanosheet%20membrane%20with%20tailored%20nanochannels%20for%20ultrafast%20and%20thermo-responsive%20nanofiltration&rft.jtitle=Nano%20research&rft.au=Jia,%20Wei&rft.date=2020-11-01&rft.volume=13&rft.issue=11&rft.spage=2973&rft.epage=2978&rft.pages=2973-2978&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-2959-6&rft_dat=%3Cproquest_cross%3E2440211582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440211582&rft_id=info:pmid/&rfr_iscdi=true