Aqueous organic redox flow batteries
Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density...
Gespeichert in:
Veröffentlicht in: | Nano research 2019-09, Vol.12 (9), p.1988-2001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2001 |
---|---|
container_issue | 9 |
container_start_page | 1988 |
container_title | Nano research |
container_volume | 12 |
creator | Singh, Vikram Kim, Soeun Kang, Jungtaek Byon, Hye Ryung |
description | Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field. |
doi_str_mv | 10.1007/s12274-019-2355-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503529826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503529826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7e0fd368495d8648fd1f75339c464356ad59b1543056732815b041c7248d01e43</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwA7hVgmvAdpw0OU4TDKRJXOAcdW06bRrLSDoB_55OBXECH2wfvvdsPSEuEW4QoLzNSFSyBHSSlNaSjsQInbMS-jr-2ZH4VJzlvAYwhGxH4nrytg9xn4uYltV2VRcpNPGjaDfxvVhUXRfSKuRzcdJWmxwuvudYvNzfPU8f5Pxp9jidzGWtmDtZBmgbZSw73VjDtm2wLbVSrmbDSpuq0W6BmhVoUyqyqBfAWJfEtgEMrMbiavDdpdi_lTu_jvu07U960qA0OUvmX4osOWfYHCgcqDrFnFNo_S6tXqv06RH8ITI_ROb7yPwhsr6NBQ2a3LPbZUi_zn-LvgBsYWop</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503529826</pqid></control><display><type>article</type><title>Aqueous organic redox flow batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Vikram ; Kim, Soeun ; Kang, Jungtaek ; Byon, Hye Ryung</creator><creatorcontrib>Singh, Vikram ; Kim, Soeun ; Kang, Jungtaek ; Byon, Hye Ryung</creatorcontrib><description>Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-019-2355-2</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aqueous solutions ; Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Couples ; Cycles ; Electrochemistry ; Electrolytes ; Electron transfer ; Energy resources ; Energy sources ; Energy storage ; Flux density ; Materials Science ; Nanotechnology ; Organic chemistry ; Rechargeable batteries ; Redox potential ; Redox properties ; Review Article ; Solubility ; Stability ; Storage batteries ; Vanadium</subject><ispartof>Nano research, 2019-09, Vol.12 (9), p.1988-2001</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7e0fd368495d8648fd1f75339c464356ad59b1543056732815b041c7248d01e43</citedby><cites>FETCH-LOGICAL-c344t-7e0fd368495d8648fd1f75339c464356ad59b1543056732815b041c7248d01e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-019-2355-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-019-2355-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Singh, Vikram</creatorcontrib><creatorcontrib>Kim, Soeun</creatorcontrib><creatorcontrib>Kang, Jungtaek</creatorcontrib><creatorcontrib>Byon, Hye Ryung</creatorcontrib><title>Aqueous organic redox flow batteries</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.</description><subject>Aqueous solutions</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Couples</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electron transfer</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Rechargeable batteries</subject><subject>Redox potential</subject><subject>Redox properties</subject><subject>Review Article</subject><subject>Solubility</subject><subject>Stability</subject><subject>Storage batteries</subject><subject>Vanadium</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPwzAMhSMEEmPwA7hVgmvAdpw0OU4TDKRJXOAcdW06bRrLSDoB_55OBXECH2wfvvdsPSEuEW4QoLzNSFSyBHSSlNaSjsQInbMS-jr-2ZH4VJzlvAYwhGxH4nrytg9xn4uYltV2VRcpNPGjaDfxvVhUXRfSKuRzcdJWmxwuvudYvNzfPU8f5Pxp9jidzGWtmDtZBmgbZSw73VjDtm2wLbVSrmbDSpuq0W6BmhVoUyqyqBfAWJfEtgEMrMbiavDdpdi_lTu_jvu07U960qA0OUvmX4osOWfYHCgcqDrFnFNo_S6tXqv06RH8ITI_ROb7yPwhsr6NBQ2a3LPbZUi_zn-LvgBsYWop</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Singh, Vikram</creator><creator>Kim, Soeun</creator><creator>Kang, Jungtaek</creator><creator>Byon, Hye Ryung</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190901</creationdate><title>Aqueous organic redox flow batteries</title><author>Singh, Vikram ; Kim, Soeun ; Kang, Jungtaek ; Byon, Hye Ryung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7e0fd368495d8648fd1f75339c464356ad59b1543056732815b041c7248d01e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Couples</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electron transfer</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Rechargeable batteries</topic><topic>Redox potential</topic><topic>Redox properties</topic><topic>Review Article</topic><topic>Solubility</topic><topic>Stability</topic><topic>Storage batteries</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Vikram</creatorcontrib><creatorcontrib>Kim, Soeun</creatorcontrib><creatorcontrib>Kang, Jungtaek</creatorcontrib><creatorcontrib>Byon, Hye Ryung</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Vikram</au><au>Kim, Soeun</au><au>Kang, Jungtaek</au><au>Byon, Hye Ryung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous organic redox flow batteries</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>12</volume><issue>9</issue><spage>1988</spage><epage>2001</epage><pages>1988-2001</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-019-2355-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2019-09, Vol.12 (9), p.1988-2001 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2503529826 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aqueous solutions Atomic/Molecular Structure and Spectra Batteries Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Couples Cycles Electrochemistry Electrolytes Electron transfer Energy resources Energy sources Energy storage Flux density Materials Science Nanotechnology Organic chemistry Rechargeable batteries Redox potential Redox properties Review Article Solubility Stability Storage batteries Vanadium |
title | Aqueous organic redox flow batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20organic%20redox%20flow%20batteries&rft.jtitle=Nano%20research&rft.au=Singh,%20Vikram&rft.date=2019-09-01&rft.volume=12&rft.issue=9&rft.spage=1988&rft.epage=2001&rft.pages=1988-2001&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-019-2355-2&rft_dat=%3Cproquest_cross%3E2503529826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503529826&rft_id=info:pmid/&rfr_iscdi=true |