Aqueous organic redox flow batteries

Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2019-09, Vol.12 (9), p.1988-2001
Hauptverfasser: Singh, Vikram, Kim, Soeun, Kang, Jungtaek, Byon, Hye Ryung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2001
container_issue 9
container_start_page 1988
container_title Nano research
container_volume 12
creator Singh, Vikram
Kim, Soeun
Kang, Jungtaek
Byon, Hye Ryung
description Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.
doi_str_mv 10.1007/s12274-019-2355-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503529826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503529826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7e0fd368495d8648fd1f75339c464356ad59b1543056732815b041c7248d01e43</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmPwA7hVgmvAdpw0OU4TDKRJXOAcdW06bRrLSDoB_55OBXECH2wfvvdsPSEuEW4QoLzNSFSyBHSSlNaSjsQInbMS-jr-2ZH4VJzlvAYwhGxH4nrytg9xn4uYltV2VRcpNPGjaDfxvVhUXRfSKuRzcdJWmxwuvudYvNzfPU8f5Pxp9jidzGWtmDtZBmgbZSw73VjDtm2wLbVSrmbDSpuq0W6BmhVoUyqyqBfAWJfEtgEMrMbiavDdpdi_lTu_jvu07U960qA0OUvmX4osOWfYHCgcqDrFnFNo_S6tXqv06RH8ITI_ROb7yPwhsr6NBQ2a3LPbZUi_zn-LvgBsYWop</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503529826</pqid></control><display><type>article</type><title>Aqueous organic redox flow batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Singh, Vikram ; Kim, Soeun ; Kang, Jungtaek ; Byon, Hye Ryung</creator><creatorcontrib>Singh, Vikram ; Kim, Soeun ; Kang, Jungtaek ; Byon, Hye Ryung</creatorcontrib><description>Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-019-2355-2</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aqueous solutions ; Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Couples ; Cycles ; Electrochemistry ; Electrolytes ; Electron transfer ; Energy resources ; Energy sources ; Energy storage ; Flux density ; Materials Science ; Nanotechnology ; Organic chemistry ; Rechargeable batteries ; Redox potential ; Redox properties ; Review Article ; Solubility ; Stability ; Storage batteries ; Vanadium</subject><ispartof>Nano research, 2019-09, Vol.12 (9), p.1988-2001</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7e0fd368495d8648fd1f75339c464356ad59b1543056732815b041c7248d01e43</citedby><cites>FETCH-LOGICAL-c344t-7e0fd368495d8648fd1f75339c464356ad59b1543056732815b041c7248d01e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-019-2355-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-019-2355-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Singh, Vikram</creatorcontrib><creatorcontrib>Kim, Soeun</creatorcontrib><creatorcontrib>Kang, Jungtaek</creatorcontrib><creatorcontrib>Byon, Hye Ryung</creatorcontrib><title>Aqueous organic redox flow batteries</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.</description><subject>Aqueous solutions</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Couples</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electron transfer</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Rechargeable batteries</subject><subject>Redox potential</subject><subject>Redox properties</subject><subject>Review Article</subject><subject>Solubility</subject><subject>Stability</subject><subject>Storage batteries</subject><subject>Vanadium</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFPwzAMhSMEEmPwA7hVgmvAdpw0OU4TDKRJXOAcdW06bRrLSDoB_55OBXECH2wfvvdsPSEuEW4QoLzNSFSyBHSSlNaSjsQInbMS-jr-2ZH4VJzlvAYwhGxH4nrytg9xn4uYltV2VRcpNPGjaDfxvVhUXRfSKuRzcdJWmxwuvudYvNzfPU8f5Pxp9jidzGWtmDtZBmgbZSw73VjDtm2wLbVSrmbDSpuq0W6BmhVoUyqyqBfAWJfEtgEMrMbiavDdpdi_lTu_jvu07U960qA0OUvmX4osOWfYHCgcqDrFnFNo_S6tXqv06RH8ITI_ROb7yPwhsr6NBQ2a3LPbZUi_zn-LvgBsYWop</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Singh, Vikram</creator><creator>Kim, Soeun</creator><creator>Kang, Jungtaek</creator><creator>Byon, Hye Ryung</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190901</creationdate><title>Aqueous organic redox flow batteries</title><author>Singh, Vikram ; Kim, Soeun ; Kang, Jungtaek ; Byon, Hye Ryung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7e0fd368495d8648fd1f75339c464356ad59b1543056732815b041c7248d01e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Couples</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electron transfer</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Rechargeable batteries</topic><topic>Redox potential</topic><topic>Redox properties</topic><topic>Review Article</topic><topic>Solubility</topic><topic>Stability</topic><topic>Storage batteries</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Vikram</creatorcontrib><creatorcontrib>Kim, Soeun</creatorcontrib><creatorcontrib>Kang, Jungtaek</creatorcontrib><creatorcontrib>Byon, Hye Ryung</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Vikram</au><au>Kim, Soeun</au><au>Kang, Jungtaek</au><au>Byon, Hye Ryung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous organic redox flow batteries</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>12</volume><issue>9</issue><spage>1988</spage><epage>2001</epage><pages>1988-2001</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-019-2355-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2019-09, Vol.12 (9), p.1988-2001
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2503529826
source SpringerLink Journals - AutoHoldings
subjects Aqueous solutions
Atomic/Molecular Structure and Spectra
Batteries
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Couples
Cycles
Electrochemistry
Electrolytes
Electron transfer
Energy resources
Energy sources
Energy storage
Flux density
Materials Science
Nanotechnology
Organic chemistry
Rechargeable batteries
Redox potential
Redox properties
Review Article
Solubility
Stability
Storage batteries
Vanadium
title Aqueous organic redox flow batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20organic%20redox%20flow%20batteries&rft.jtitle=Nano%20research&rft.au=Singh,%20Vikram&rft.date=2019-09-01&rft.volume=12&rft.issue=9&rft.spage=1988&rft.epage=2001&rft.pages=1988-2001&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-019-2355-2&rft_dat=%3Cproquest_cross%3E2503529826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503529826&rft_id=info:pmid/&rfr_iscdi=true