Controlled oxidation of Ni for stress-free hole transport layer of large-scale perovskite solar cells
The effect of the residual thermal stress of NiO films on the performance of an inverted type perovskite solar cell was studied. In this study, NiO films were grown on fluorine doped tin oxide (FTO) substrates of different surface roughness by thermally oxidizing Ni film and were tested as a hole tr...
Gespeichert in:
Veröffentlicht in: | Nano research 2019-12, Vol.12 (12), p.3089-3094 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of the residual thermal stress of NiO films on the performance of an inverted type perovskite solar cell was studied. In this study, NiO films were grown on fluorine doped tin oxide (FTO) substrates of different surface roughness by thermally oxidizing Ni film and were tested as a hole transport layer for large-scale perovskite solar cells. Experimental and simulation results show that it is very important to suppress the appearance of the residual stress at the NiO-FTO interface during the oxidation of the Ni film for effective hole extraction. The Ni oxidation on the flat FTO film produced in-plane compressive stress in the NiO film due to the Ni film volume expansion. This led to the formation of defects including small blisters. These residual stress and defects increased leakage current through the NiO film, preventing holes from being selectively collected at the NiO-perovskite interface. However, when Ni was deposited and oxidized on the rough surface, the residual stress of the NiO film was negligible and its inherent high resistance was maintained. Stress-free NiO film is an excellent hole transport layer that stops the photogenerated electrons of the perovskite layer from moving to FTO. The improvements in the structural and electrical qualities of the NiO film by engineering the residual stress reduce the carrier recombination and increase the power conversion efficiency of the perovskite solar cells to 16.37%. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-019-2556-8 |