High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage

Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2020-10, Vol.13 (10), p.2862-2868
Hauptverfasser: Su, Dongqin, Huang, Man, Zhang, Junhao, Guo, Xingmei, Chen, Jiale, Xue, Yanchun, Yuan, Aihua, Kong, Qinghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2868
container_issue 10
container_start_page 2862
container_title Nano research
container_volume 13
creator Su, Dongqin
Huang, Man
Zhang, Junhao
Guo, Xingmei
Chen, Jiale
Xue, Yanchun
Yuan, Aihua
Kong, Qinghong
description Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g −1 at 0.1 A·g −1 and 242.5 mAh·g −1 at 1 A·g −1 for 2,500 cycles with exceptional rate capability of 5 A·g −1 with reversible capacities of 201.2 mAh·g −1 . The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.
doi_str_mv 10.1007/s12274-020-2944-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503526462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436972957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-50474c9ce2fabecfc018a38dcffc71f06463eddc27fc419f84abd467c7fa53073</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGyWmAO248TJiCqgSAgWmC3XPicubRzsRKVvj6uAmOCWu-H_vpN-hC4puaaEiJtIGRM8I4xkrObpOEIzWtdVRtIc_9yU8VN0FuOakJJRXs1Qs3RNi58z43swuHUQVNCt02qDex_8GLFWYeU73MGw8-E94p0bWgyfvepMIlw3QNioPYSIrQ8YrHXaQTfg6I0btzgOPqgGztGJVZsIF997jt7u714Xy-zp5eFxcfuU6ZzzISsIF1zXGphVK9BWE1qpvDLaWi2oJSUvczBGM2E1p7WtuFoZXgotrCpyIvI5upq8ffAfI8RBrv0YuvRSsoLkBUsG9m-K52UtWF0cXHRK6eBjDGBlH9xWhb2kRB5al1PrMrUuD61Lkhg2MTFluwbCr_lv6AsviYZl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436972957</pqid></control><display><type>article</type><title>High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage</title><source>SpringerLink Journals - AutoHoldings</source><creator>Su, Dongqin ; Huang, Man ; Zhang, Junhao ; Guo, Xingmei ; Chen, Jiale ; Xue, Yanchun ; Yuan, Aihua ; Kong, Qinghong</creator><creatorcontrib>Su, Dongqin ; Huang, Man ; Zhang, Junhao ; Guo, Xingmei ; Chen, Jiale ; Xue, Yanchun ; Yuan, Aihua ; Kong, Qinghong</creatorcontrib><description>Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g −1 at 0.1 A·g −1 and 242.5 mAh·g −1 at 1 A·g −1 for 2,500 cycles with exceptional rate capability of 5 A·g −1 with reversible capacities of 201.2 mAh·g −1 . The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-2944-0</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Anodes ; Atomic/Molecular Structure and Spectra ; Batteries ; Benzimidazoles ; Biomedicine ; Biotechnology ; Carbon ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrode materials ; Energy storage ; Flowers ; Interlayers ; Materials Science ; Metal ions ; Nanotechnology ; Precursors ; Rechargeable batteries ; Research Article ; Sodium ; Sodium-ion batteries ; Storage batteries ; Structural hierarchy ; Synthesis</subject><ispartof>Nano research, 2020-10, Vol.13 (10), p.2862-2868</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-50474c9ce2fabecfc018a38dcffc71f06463eddc27fc419f84abd467c7fa53073</citedby><cites>FETCH-LOGICAL-c344t-50474c9ce2fabecfc018a38dcffc71f06463eddc27fc419f84abd467c7fa53073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-2944-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-2944-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Su, Dongqin</creatorcontrib><creatorcontrib>Huang, Man</creatorcontrib><creatorcontrib>Zhang, Junhao</creatorcontrib><creatorcontrib>Guo, Xingmei</creatorcontrib><creatorcontrib>Chen, Jiale</creatorcontrib><creatorcontrib>Xue, Yanchun</creatorcontrib><creatorcontrib>Yuan, Aihua</creatorcontrib><creatorcontrib>Kong, Qinghong</creatorcontrib><title>High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g −1 at 0.1 A·g −1 and 242.5 mAh·g −1 at 1 A·g −1 for 2,500 cycles with exceptional rate capability of 5 A·g −1 with reversible capacities of 201.2 mAh·g −1 . The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.</description><subject>Anodes</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Benzimidazoles</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Flowers</subject><subject>Interlayers</subject><subject>Materials Science</subject><subject>Metal ions</subject><subject>Nanotechnology</subject><subject>Precursors</subject><subject>Rechargeable batteries</subject><subject>Research Article</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><subject>Structural hierarchy</subject><subject>Synthesis</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAQhi0EEqXwAGyWmAO248TJiCqgSAgWmC3XPicubRzsRKVvj6uAmOCWu-H_vpN-hC4puaaEiJtIGRM8I4xkrObpOEIzWtdVRtIc_9yU8VN0FuOakJJRXs1Qs3RNi58z43swuHUQVNCt02qDex_8GLFWYeU73MGw8-E94p0bWgyfvepMIlw3QNioPYSIrQ8YrHXaQTfg6I0btzgOPqgGztGJVZsIF997jt7u714Xy-zp5eFxcfuU6ZzzISsIF1zXGphVK9BWE1qpvDLaWi2oJSUvczBGM2E1p7WtuFoZXgotrCpyIvI5upq8ffAfI8RBrv0YuvRSsoLkBUsG9m-K52UtWF0cXHRK6eBjDGBlH9xWhb2kRB5al1PrMrUuD61Lkhg2MTFluwbCr_lv6AsviYZl</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Su, Dongqin</creator><creator>Huang, Man</creator><creator>Zhang, Junhao</creator><creator>Guo, Xingmei</creator><creator>Chen, Jiale</creator><creator>Xue, Yanchun</creator><creator>Yuan, Aihua</creator><creator>Kong, Qinghong</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201001</creationdate><title>High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage</title><author>Su, Dongqin ; Huang, Man ; Zhang, Junhao ; Guo, Xingmei ; Chen, Jiale ; Xue, Yanchun ; Yuan, Aihua ; Kong, Qinghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-50474c9ce2fabecfc018a38dcffc71f06463eddc27fc419f84abd467c7fa53073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Benzimidazoles</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Flowers</topic><topic>Interlayers</topic><topic>Materials Science</topic><topic>Metal ions</topic><topic>Nanotechnology</topic><topic>Precursors</topic><topic>Rechargeable batteries</topic><topic>Research Article</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><topic>Structural hierarchy</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Dongqin</creatorcontrib><creatorcontrib>Huang, Man</creatorcontrib><creatorcontrib>Zhang, Junhao</creatorcontrib><creatorcontrib>Guo, Xingmei</creatorcontrib><creatorcontrib>Chen, Jiale</creatorcontrib><creatorcontrib>Xue, Yanchun</creatorcontrib><creatorcontrib>Yuan, Aihua</creatorcontrib><creatorcontrib>Kong, Qinghong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Dongqin</au><au>Huang, Man</au><au>Zhang, Junhao</au><au>Guo, Xingmei</au><au>Chen, Jiale</au><au>Xue, Yanchun</au><au>Yuan, Aihua</au><au>Kong, Qinghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>13</volume><issue>10</issue><spage>2862</spage><epage>2868</epage><pages>2862-2868</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g −1 at 0.1 A·g −1 and 242.5 mAh·g −1 at 1 A·g −1 for 2,500 cycles with exceptional rate capability of 5 A·g −1 with reversible capacities of 201.2 mAh·g −1 . The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-020-2944-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2020-10, Vol.13 (10), p.2862-2868
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2503526462
source SpringerLink Journals - AutoHoldings
subjects Anodes
Atomic/Molecular Structure and Spectra
Batteries
Benzimidazoles
Biomedicine
Biotechnology
Carbon
Chemistry and Materials Science
Condensed Matter Physics
Electrode materials
Energy storage
Flowers
Interlayers
Materials Science
Metal ions
Nanotechnology
Precursors
Rechargeable batteries
Research Article
Sodium
Sodium-ion batteries
Storage batteries
Structural hierarchy
Synthesis
title High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20N-doped%20hierarchical%20porous%20carbon%20networks%20with%20expanded%20interlayers%20for%20efficient%20sodium%20storage&rft.jtitle=Nano%20research&rft.au=Su,%20Dongqin&rft.date=2020-10-01&rft.volume=13&rft.issue=10&rft.spage=2862&rft.epage=2868&rft.pages=2862-2868&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-2944-0&rft_dat=%3Cproquest_cross%3E2436972957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436972957&rft_id=info:pmid/&rfr_iscdi=true