Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate
Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe 2 usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemi...
Gespeichert in:
Veröffentlicht in: | Nano research 2020-10, Vol.13 (10), p.2625-2631 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2631 |
---|---|
container_issue | 10 |
container_start_page | 2625 |
container_title | Nano research |
container_volume | 13 |
creator | Chen, Mingrui Zhang, Anyi Liu, Yihang Cui, Dingzhou Li, Zhen Chung, Yu-Han Mutyala, Sai Praneetha Mecklenburg, Matthew Nie, Xiao Xu, Chi Wu, Fanqi Liu, Qingzhou Zhou, Chongwu |
description | Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe
2
usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemical vapor deposition (CVD) process as a catalyst to assist the growth of WSe
2
and successfully achieved highly aligned monolayer WSe
2
triangular flakes grown on
c
-plane sapphire with large domain sizes (130 µm) and fast growth rate (4.3 µm·s
−1
). When the aligned WSe
2
domains merged together, a continuous monolayer WSe
2
was formed with good uniformity. After transferring to Si/SiO
2
substrates, field effect transistors were fabricated on the continuous monolayer WSe
2
, and an average mobility of 12 cm
2
·V
−1
·s
−1
was achieved, demonstrating the good quality of the material. This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes. |
doi_str_mv | 10.1007/s12274-020-2893-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503525441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436975501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ee5b29016b9b967cfbee5ac0c8f7c3c6e810773cb25ff5baf2ad108d63cbe7a13</originalsourceid><addsrcrecordid>eNp9kUtPwzAQhC0EEqXwA7hZ4mywnYeTI6p4SZU4AOJoOc46dZXEwU6pyq_HJSBOsJddjb6ZPQxC54xeMkrFVWCci5RQTgkvyoSIAzRjZVkQGufw52Y8PUYnIawpzTlLixkKd66tybsanCcqBBtGqLFeQWe1avGXjmsYXLCjdT12BqvWNn2EOte7Vu3A49cn4HhrxxVulW8A165TtsfBfgBWfY2NCiNuvNtGwqsRTtGRUW2As-89Ry-3N8-Le7J8vHtYXC-JTgoxEoCs4iVleVVWZS60qaKiNNWFETrRORSMCpHoimfGZJUyXNWMFnUeJRCKJXN0MeUO3r1tIIxy7Ta-jy8lz2iS8SxN_6fSJC9FltE9xSZKexeCByMHbzvld5JRuW9ATg3I2IDcNyBF9PDJEyLbN-B_k_82fQLlrYpB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436975501</pqid></control><display><type>article</type><title>Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate</title><source>SpringerLink Journals</source><creator>Chen, Mingrui ; Zhang, Anyi ; Liu, Yihang ; Cui, Dingzhou ; Li, Zhen ; Chung, Yu-Han ; Mutyala, Sai Praneetha ; Mecklenburg, Matthew ; Nie, Xiao ; Xu, Chi ; Wu, Fanqi ; Liu, Qingzhou ; Zhou, Chongwu</creator><creatorcontrib>Chen, Mingrui ; Zhang, Anyi ; Liu, Yihang ; Cui, Dingzhou ; Li, Zhen ; Chung, Yu-Han ; Mutyala, Sai Praneetha ; Mecklenburg, Matthew ; Nie, Xiao ; Xu, Chi ; Wu, Fanqi ; Liu, Qingzhou ; Zhou, Chongwu</creatorcontrib><description>Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe
2
usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemical vapor deposition (CVD) process as a catalyst to assist the growth of WSe
2
and successfully achieved highly aligned monolayer WSe
2
triangular flakes grown on
c
-plane sapphire with large domain sizes (130 µm) and fast growth rate (4.3 µm·s
−1
). When the aligned WSe
2
domains merged together, a continuous monolayer WSe
2
was formed with good uniformity. After transferring to Si/SiO
2
substrates, field effect transistors were fabricated on the continuous monolayer WSe
2
, and an average mobility of 12 cm
2
·V
−1
·s
−1
was achieved, demonstrating the good quality of the material. This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-2893-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Alignment ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysts ; Chemical vapor deposition ; Chemistry and Materials Science ; Condensed Matter Physics ; Domains ; Field effect transistors ; Flakes ; Gold ; Growth rate ; Materials Science ; Metal vapors ; Monolayers ; Nanotechnology ; Research Article ; Sapphire ; Semiconductor devices ; Silicon dioxide ; Silicon substrates ; Transition metal compounds ; Vapors</subject><ispartof>Nano research, 2020-10, Vol.13 (10), p.2625-2631</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ee5b29016b9b967cfbee5ac0c8f7c3c6e810773cb25ff5baf2ad108d63cbe7a13</citedby><cites>FETCH-LOGICAL-c387t-ee5b29016b9b967cfbee5ac0c8f7c3c6e810773cb25ff5baf2ad108d63cbe7a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-2893-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-2893-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Mingrui</creatorcontrib><creatorcontrib>Zhang, Anyi</creatorcontrib><creatorcontrib>Liu, Yihang</creatorcontrib><creatorcontrib>Cui, Dingzhou</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Chung, Yu-Han</creatorcontrib><creatorcontrib>Mutyala, Sai Praneetha</creatorcontrib><creatorcontrib>Mecklenburg, Matthew</creatorcontrib><creatorcontrib>Nie, Xiao</creatorcontrib><creatorcontrib>Xu, Chi</creatorcontrib><creatorcontrib>Wu, Fanqi</creatorcontrib><creatorcontrib>Liu, Qingzhou</creatorcontrib><creatorcontrib>Zhou, Chongwu</creatorcontrib><title>Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe
2
usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemical vapor deposition (CVD) process as a catalyst to assist the growth of WSe
2
and successfully achieved highly aligned monolayer WSe
2
triangular flakes grown on
c
-plane sapphire with large domain sizes (130 µm) and fast growth rate (4.3 µm·s
−1
). When the aligned WSe
2
domains merged together, a continuous monolayer WSe
2
was formed with good uniformity. After transferring to Si/SiO
2
substrates, field effect transistors were fabricated on the continuous monolayer WSe
2
, and an average mobility of 12 cm
2
·V
−1
·s
−1
was achieved, demonstrating the good quality of the material. This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.</description><subject>Alignment</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysts</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Domains</subject><subject>Field effect transistors</subject><subject>Flakes</subject><subject>Gold</subject><subject>Growth rate</subject><subject>Materials Science</subject><subject>Metal vapors</subject><subject>Monolayers</subject><subject>Nanotechnology</subject><subject>Research Article</subject><subject>Sapphire</subject><subject>Semiconductor devices</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>Transition metal compounds</subject><subject>Vapors</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtPwzAQhC0EEqXwA7hZ4mywnYeTI6p4SZU4AOJoOc46dZXEwU6pyq_HJSBOsJddjb6ZPQxC54xeMkrFVWCci5RQTgkvyoSIAzRjZVkQGufw52Y8PUYnIawpzTlLixkKd66tybsanCcqBBtGqLFeQWe1avGXjmsYXLCjdT12BqvWNn2EOte7Vu3A49cn4HhrxxVulW8A165TtsfBfgBWfY2NCiNuvNtGwqsRTtGRUW2As-89Ry-3N8-Le7J8vHtYXC-JTgoxEoCs4iVleVVWZS60qaKiNNWFETrRORSMCpHoimfGZJUyXNWMFnUeJRCKJXN0MeUO3r1tIIxy7Ta-jy8lz2iS8SxN_6fSJC9FltE9xSZKexeCByMHbzvld5JRuW9ATg3I2IDcNyBF9PDJEyLbN-B_k_82fQLlrYpB</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chen, Mingrui</creator><creator>Zhang, Anyi</creator><creator>Liu, Yihang</creator><creator>Cui, Dingzhou</creator><creator>Li, Zhen</creator><creator>Chung, Yu-Han</creator><creator>Mutyala, Sai Praneetha</creator><creator>Mecklenburg, Matthew</creator><creator>Nie, Xiao</creator><creator>Xu, Chi</creator><creator>Wu, Fanqi</creator><creator>Liu, Qingzhou</creator><creator>Zhou, Chongwu</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201001</creationdate><title>Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate</title><author>Chen, Mingrui ; Zhang, Anyi ; Liu, Yihang ; Cui, Dingzhou ; Li, Zhen ; Chung, Yu-Han ; Mutyala, Sai Praneetha ; Mecklenburg, Matthew ; Nie, Xiao ; Xu, Chi ; Wu, Fanqi ; Liu, Qingzhou ; Zhou, Chongwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ee5b29016b9b967cfbee5ac0c8f7c3c6e810773cb25ff5baf2ad108d63cbe7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alignment</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysts</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Domains</topic><topic>Field effect transistors</topic><topic>Flakes</topic><topic>Gold</topic><topic>Growth rate</topic><topic>Materials Science</topic><topic>Metal vapors</topic><topic>Monolayers</topic><topic>Nanotechnology</topic><topic>Research Article</topic><topic>Sapphire</topic><topic>Semiconductor devices</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>Transition metal compounds</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Mingrui</creatorcontrib><creatorcontrib>Zhang, Anyi</creatorcontrib><creatorcontrib>Liu, Yihang</creatorcontrib><creatorcontrib>Cui, Dingzhou</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Chung, Yu-Han</creatorcontrib><creatorcontrib>Mutyala, Sai Praneetha</creatorcontrib><creatorcontrib>Mecklenburg, Matthew</creatorcontrib><creatorcontrib>Nie, Xiao</creatorcontrib><creatorcontrib>Xu, Chi</creatorcontrib><creatorcontrib>Wu, Fanqi</creatorcontrib><creatorcontrib>Liu, Qingzhou</creatorcontrib><creatorcontrib>Zhou, Chongwu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Mingrui</au><au>Zhang, Anyi</au><au>Liu, Yihang</au><au>Cui, Dingzhou</au><au>Li, Zhen</au><au>Chung, Yu-Han</au><au>Mutyala, Sai Praneetha</au><au>Mecklenburg, Matthew</au><au>Nie, Xiao</au><au>Xu, Chi</au><au>Wu, Fanqi</au><au>Liu, Qingzhou</au><au>Zhou, Chongwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>13</volume><issue>10</issue><spage>2625</spage><epage>2631</epage><pages>2625-2631</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Orientation-controlled growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs) may enable many new electronic and optical applications. However, previous studies reporting aligned growth of WSe
2
usually yielded very small domain sizes. Herein, we introduced gold vapor into the chemical vapor deposition (CVD) process as a catalyst to assist the growth of WSe
2
and successfully achieved highly aligned monolayer WSe
2
triangular flakes grown on
c
-plane sapphire with large domain sizes (130 µm) and fast growth rate (4.3 µm·s
−1
). When the aligned WSe
2
domains merged together, a continuous monolayer WSe
2
was formed with good uniformity. After transferring to Si/SiO
2
substrates, field effect transistors were fabricated on the continuous monolayer WSe
2
, and an average mobility of 12 cm
2
·V
−1
·s
−1
was achieved, demonstrating the good quality of the material. This report paves the way to study the effect of catalytic metal vapor in the CVD process of TMDCs and contributes a novel approach to realize the growth of aligned TMDC flakes.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-020-2893-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2020-10, Vol.13 (10), p.2625-2631 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2503525441 |
source | SpringerLink Journals |
subjects | Alignment Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Catalysts Chemical vapor deposition Chemistry and Materials Science Condensed Matter Physics Domains Field effect transistors Flakes Gold Growth rate Materials Science Metal vapors Monolayers Nanotechnology Research Article Sapphire Semiconductor devices Silicon dioxide Silicon substrates Transition metal compounds Vapors |
title | Gold-vapor-assisted chemical vapor deposition of aligned monolayer WSe2 with large domain size and fast growth rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold-vapor-assisted%20chemical%20vapor%20deposition%20of%20aligned%20monolayer%20WSe2%20with%20large%20domain%20size%20and%20fast%20growth%20rate&rft.jtitle=Nano%20research&rft.au=Chen,%20Mingrui&rft.date=2020-10-01&rft.volume=13&rft.issue=10&rft.spage=2625&rft.epage=2631&rft.pages=2625-2631&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-2893-7&rft_dat=%3Cproquest_cross%3E2436975501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436975501&rft_id=info:pmid/&rfr_iscdi=true |