Cost-effective Deployment of BERT Models in Serverless Environment

In this study we demonstrate the viability of deploying BERT-style models to serverless environments in a production setting. Since the freely available pre-trained models are too large to be deployed in this way, we utilize knowledge distillation and fine-tune the models on proprietary datasets for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-04
Hauptverfasser: Benešová, Katarína, Švec, Andrej, Šuppa, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Benešová, Katarína
Švec, Andrej
Šuppa, Marek
description In this study we demonstrate the viability of deploying BERT-style models to serverless environments in a production setting. Since the freely available pre-trained models are too large to be deployed in this way, we utilize knowledge distillation and fine-tune the models on proprietary datasets for two real-world tasks: sentiment analysis and semantic textual similarity. As a result, we obtain models that are tuned for a specific domain and deployable in serverless environments. The subsequent performance analysis shows that this solution results in latency levels acceptable for production use and that it is also a cost-effective approach for small-to-medium size deployments of BERT models, all without any infrastructure overhead.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2503517032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503517032</sourcerecordid><originalsourceid>FETCH-proquest_journals_25035170323</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxw4F9KLsc6tFRcX7V5EL9ASk5pLC769Cj6A0z_830wkqFSe7TaIC5Ey91JK3BaotUpEWXmOGRlDt9hNBHsarH89yEXwBsr63MDJ38kydA4uFCYKlpihdlMXvPvClZibq2VKf12K9aFuqmM2BP8ciWPb-zG4z2pRS6XzQipU_6k3kDg5dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503517032</pqid></control><display><type>article</type><title>Cost-effective Deployment of BERT Models in Serverless Environment</title><source>Free E- Journals</source><creator>Benešová, Katarína ; Švec, Andrej ; Šuppa, Marek</creator><creatorcontrib>Benešová, Katarína ; Švec, Andrej ; Šuppa, Marek</creatorcontrib><description>In this study we demonstrate the viability of deploying BERT-style models to serverless environments in a production setting. Since the freely available pre-trained models are too large to be deployed in this way, we utilize knowledge distillation and fine-tune the models on proprietary datasets for two real-world tasks: sentiment analysis and semantic textual similarity. As a result, we obtain models that are tuned for a specific domain and deployable in serverless environments. The subsequent performance analysis shows that this solution results in latency levels acceptable for production use and that it is also a cost-effective approach for small-to-medium size deployments of BERT models, all without any infrastructure overhead.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data mining ; Distillation ; Environment models</subject><ispartof>arXiv.org, 2021-04</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Benešová, Katarína</creatorcontrib><creatorcontrib>Švec, Andrej</creatorcontrib><creatorcontrib>Šuppa, Marek</creatorcontrib><title>Cost-effective Deployment of BERT Models in Serverless Environment</title><title>arXiv.org</title><description>In this study we demonstrate the viability of deploying BERT-style models to serverless environments in a production setting. Since the freely available pre-trained models are too large to be deployed in this way, we utilize knowledge distillation and fine-tune the models on proprietary datasets for two real-world tasks: sentiment analysis and semantic textual similarity. As a result, we obtain models that are tuned for a specific domain and deployable in serverless environments. The subsequent performance analysis shows that this solution results in latency levels acceptable for production use and that it is also a cost-effective approach for small-to-medium size deployments of BERT models, all without any infrastructure overhead.</description><subject>Data mining</subject><subject>Distillation</subject><subject>Environment models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxw4F9KLsc6tFRcX7V5EL9ASk5pLC769Cj6A0z_830wkqFSe7TaIC5Ey91JK3BaotUpEWXmOGRlDt9hNBHsarH89yEXwBsr63MDJ38kydA4uFCYKlpihdlMXvPvClZibq2VKf12K9aFuqmM2BP8ciWPb-zG4z2pRS6XzQipU_6k3kDg5dw</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Benešová, Katarína</creator><creator>Švec, Andrej</creator><creator>Šuppa, Marek</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210419</creationdate><title>Cost-effective Deployment of BERT Models in Serverless Environment</title><author>Benešová, Katarína ; Švec, Andrej ; Šuppa, Marek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25035170323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data mining</topic><topic>Distillation</topic><topic>Environment models</topic><toplevel>online_resources</toplevel><creatorcontrib>Benešová, Katarína</creatorcontrib><creatorcontrib>Švec, Andrej</creatorcontrib><creatorcontrib>Šuppa, Marek</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benešová, Katarína</au><au>Švec, Andrej</au><au>Šuppa, Marek</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cost-effective Deployment of BERT Models in Serverless Environment</atitle><jtitle>arXiv.org</jtitle><date>2021-04-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this study we demonstrate the viability of deploying BERT-style models to serverless environments in a production setting. Since the freely available pre-trained models are too large to be deployed in this way, we utilize knowledge distillation and fine-tune the models on proprietary datasets for two real-world tasks: sentiment analysis and semantic textual similarity. As a result, we obtain models that are tuned for a specific domain and deployable in serverless environments. The subsequent performance analysis shows that this solution results in latency levels acceptable for production use and that it is also a cost-effective approach for small-to-medium size deployments of BERT models, all without any infrastructure overhead.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2503517032
source Free E- Journals
subjects Data mining
Distillation
Environment models
title Cost-effective Deployment of BERT Models in Serverless Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cost-effective%20Deployment%20of%20BERT%20Models%20in%20Serverless%20Environment&rft.jtitle=arXiv.org&rft.au=Bene%C5%A1ov%C3%A1,%20Katar%C3%ADna&rft.date=2021-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2503517032%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503517032&rft_id=info:pmid/&rfr_iscdi=true