Numerical Simulation of Tunable Terahertz Graphene-Based Sensor for Breast Tumor Detection

This article presents a modeling and analysis of a tunable graphene-based sensor for breast tumor detection operating in the terahertz frequency range using the wave concept iterative process (WCIP) method. Through the novel implementation approach of the biological tissues in the WCIP method, we ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-04, Vol.21 (8), p.9844-9851
Hauptverfasser: Hlali, Aymen, Oueslati, Afef, Zairi, Hassen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9851
container_issue 8
container_start_page 9844
container_title IEEE sensors journal
container_volume 21
creator Hlali, Aymen
Oueslati, Afef
Zairi, Hassen
description This article presents a modeling and analysis of a tunable graphene-based sensor for breast tumor detection operating in the terahertz frequency range using the wave concept iterative process (WCIP) method. Through the novel implementation approach of the biological tissues in the WCIP method, we can integrate the normal and tumor of human breast tissues into this algorithm. At the beginning, the details of the algorithms of human breast tissue and graphene modeling in the WCIP method are presented. In order to verify the results obtained by the WCIP algorithm, we presented a comparative study with the CST simulator. Then, using the WCIP method, the numerical simulation results demonstrate the capability of the proposed sensor to detect the normal breast tissue with good sensitivity of 7.11 (THz/RIU) and breast tumor with a high sensitivity of 8.21 THz/RIU and large figure of merits of 17.51 and 20.23 RIU −1 , respectively. Finally, the simplicity, efficiency and tunability are the benefits of the proposed sensor, which makes it suitable for breast tumor detection in the THz band.
doi_str_mv 10.1109/JSEN.2021.3060326
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2503501159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9357347</ieee_id><sourcerecordid>2503501159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-85deb924c29c2cfe4fe37413a6cca51f56822ae7cc4694dfa9ed6a425cc2cc7b3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ6a52SytLVWpdRFK4ibkGZu6JR51GRmob_eDC0uLvceOOdc-BC6JXhCCFYPb-v5akIxJROGM8xodoZGRIg8JZLn58PNcMqZ_LxEVyHsMSZKCjlCX6u-Bl9aUyXrsu4r05Vtk7Qu2fSN2VaQbMCbHfjuN1l4c9hBA-nUBCiSNTSh9YmLM_VgQhcjdRRP0IEdWq7RhTNVgJvTHqOP5_lm9pIu3xevs8dlaqliXZqLAraK8qgstQ64AyY5YSaz1gjiRJZTakBayzPFC2cUFJnhVNhot3LLxuj-2Hvw7XcPodP7tvdNfKmpwExgQoSKLnJ0Wd-G4MHpgy9r4380wXpAqAeEekCoTwhj5u6YKQHg36-YkIxL9gfSO247</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503501159</pqid></control><display><type>article</type><title>Numerical Simulation of Tunable Terahertz Graphene-Based Sensor for Breast Tumor Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Hlali, Aymen ; Oueslati, Afef ; Zairi, Hassen</creator><creatorcontrib>Hlali, Aymen ; Oueslati, Afef ; Zairi, Hassen</creatorcontrib><description>This article presents a modeling and analysis of a tunable graphene-based sensor for breast tumor detection operating in the terahertz frequency range using the wave concept iterative process (WCIP) method. Through the novel implementation approach of the biological tissues in the WCIP method, we can integrate the normal and tumor of human breast tissues into this algorithm. At the beginning, the details of the algorithms of human breast tissue and graphene modeling in the WCIP method are presented. In order to verify the results obtained by the WCIP algorithm, we presented a comparative study with the CST simulator. Then, using the WCIP method, the numerical simulation results demonstrate the capability of the proposed sensor to detect the normal breast tissue with good sensitivity of 7.11 (THz/RIU) and breast tumor with a high sensitivity of 8.21 THz/RIU and large figure of merits of 17.51 and 20.23 RIU −1 , respectively. Finally, the simplicity, efficiency and tunability are the benefits of the proposed sensor, which makes it suitable for breast tumor detection in the THz band.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3060326</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Biological system modeling ; Biology ; Breast ; breast cancer ; Breast tissue ; Breast tumors ; Comparative studies ; Computer simulation ; Frequency ranges ; Graphene ; Iterative methods ; Mathematical model ; Mathematical models ; Sensitivity ; Sensor ; Sensors ; terahertz band ; Terahertz frequencies ; Tissues ; Tumors ; wave concept iterative process (WCIP) method</subject><ispartof>IEEE sensors journal, 2021-04, Vol.21 (8), p.9844-9851</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-85deb924c29c2cfe4fe37413a6cca51f56822ae7cc4694dfa9ed6a425cc2cc7b3</citedby><cites>FETCH-LOGICAL-c293t-85deb924c29c2cfe4fe37413a6cca51f56822ae7cc4694dfa9ed6a425cc2cc7b3</cites><orcidid>0000-0002-7248-6121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9357347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9357347$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hlali, Aymen</creatorcontrib><creatorcontrib>Oueslati, Afef</creatorcontrib><creatorcontrib>Zairi, Hassen</creatorcontrib><title>Numerical Simulation of Tunable Terahertz Graphene-Based Sensor for Breast Tumor Detection</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This article presents a modeling and analysis of a tunable graphene-based sensor for breast tumor detection operating in the terahertz frequency range using the wave concept iterative process (WCIP) method. Through the novel implementation approach of the biological tissues in the WCIP method, we can integrate the normal and tumor of human breast tissues into this algorithm. At the beginning, the details of the algorithms of human breast tissue and graphene modeling in the WCIP method are presented. In order to verify the results obtained by the WCIP algorithm, we presented a comparative study with the CST simulator. Then, using the WCIP method, the numerical simulation results demonstrate the capability of the proposed sensor to detect the normal breast tissue with good sensitivity of 7.11 (THz/RIU) and breast tumor with a high sensitivity of 8.21 THz/RIU and large figure of merits of 17.51 and 20.23 RIU −1 , respectively. Finally, the simplicity, efficiency and tunability are the benefits of the proposed sensor, which makes it suitable for breast tumor detection in the THz band.</description><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Biology</subject><subject>Breast</subject><subject>breast cancer</subject><subject>Breast tissue</subject><subject>Breast tumors</subject><subject>Comparative studies</subject><subject>Computer simulation</subject><subject>Frequency ranges</subject><subject>Graphene</subject><subject>Iterative methods</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Sensitivity</subject><subject>Sensor</subject><subject>Sensors</subject><subject>terahertz band</subject><subject>Terahertz frequencies</subject><subject>Tissues</subject><subject>Tumors</subject><subject>wave concept iterative process (WCIP) method</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwMuJ6a52SytLVWpdRFK4ibkGZu6JR51GRmob_eDC0uLvceOOdc-BC6JXhCCFYPb-v5akIxJROGM8xodoZGRIg8JZLn58PNcMqZ_LxEVyHsMSZKCjlCX6u-Bl9aUyXrsu4r05Vtk7Qu2fSN2VaQbMCbHfjuN1l4c9hBA-nUBCiSNTSh9YmLM_VgQhcjdRRP0IEdWq7RhTNVgJvTHqOP5_lm9pIu3xevs8dlaqliXZqLAraK8qgstQ64AyY5YSaz1gjiRJZTakBayzPFC2cUFJnhVNhot3LLxuj-2Hvw7XcPodP7tvdNfKmpwExgQoSKLnJ0Wd-G4MHpgy9r4380wXpAqAeEekCoTwhj5u6YKQHg36-YkIxL9gfSO247</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Hlali, Aymen</creator><creator>Oueslati, Afef</creator><creator>Zairi, Hassen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7248-6121</orcidid></search><sort><creationdate>20210415</creationdate><title>Numerical Simulation of Tunable Terahertz Graphene-Based Sensor for Breast Tumor Detection</title><author>Hlali, Aymen ; Oueslati, Afef ; Zairi, Hassen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-85deb924c29c2cfe4fe37413a6cca51f56822ae7cc4694dfa9ed6a425cc2cc7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Biology</topic><topic>Breast</topic><topic>breast cancer</topic><topic>Breast tissue</topic><topic>Breast tumors</topic><topic>Comparative studies</topic><topic>Computer simulation</topic><topic>Frequency ranges</topic><topic>Graphene</topic><topic>Iterative methods</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Sensitivity</topic><topic>Sensor</topic><topic>Sensors</topic><topic>terahertz band</topic><topic>Terahertz frequencies</topic><topic>Tissues</topic><topic>Tumors</topic><topic>wave concept iterative process (WCIP) method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hlali, Aymen</creatorcontrib><creatorcontrib>Oueslati, Afef</creatorcontrib><creatorcontrib>Zairi, Hassen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hlali, Aymen</au><au>Oueslati, Afef</au><au>Zairi, Hassen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Tunable Terahertz Graphene-Based Sensor for Breast Tumor Detection</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-04-15</date><risdate>2021</risdate><volume>21</volume><issue>8</issue><spage>9844</spage><epage>9851</epage><pages>9844-9851</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This article presents a modeling and analysis of a tunable graphene-based sensor for breast tumor detection operating in the terahertz frequency range using the wave concept iterative process (WCIP) method. Through the novel implementation approach of the biological tissues in the WCIP method, we can integrate the normal and tumor of human breast tissues into this algorithm. At the beginning, the details of the algorithms of human breast tissue and graphene modeling in the WCIP method are presented. In order to verify the results obtained by the WCIP algorithm, we presented a comparative study with the CST simulator. Then, using the WCIP method, the numerical simulation results demonstrate the capability of the proposed sensor to detect the normal breast tissue with good sensitivity of 7.11 (THz/RIU) and breast tumor with a high sensitivity of 8.21 THz/RIU and large figure of merits of 17.51 and 20.23 RIU −1 , respectively. Finally, the simplicity, efficiency and tunability are the benefits of the proposed sensor, which makes it suitable for breast tumor detection in the THz band.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3060326</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7248-6121</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-04, Vol.21 (8), p.9844-9851
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2503501159
source IEEE Electronic Library (IEL)
subjects Algorithms
Biological system modeling
Biology
Breast
breast cancer
Breast tissue
Breast tumors
Comparative studies
Computer simulation
Frequency ranges
Graphene
Iterative methods
Mathematical model
Mathematical models
Sensitivity
Sensor
Sensors
terahertz band
Terahertz frequencies
Tissues
Tumors
wave concept iterative process (WCIP) method
title Numerical Simulation of Tunable Terahertz Graphene-Based Sensor for Breast Tumor Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Tunable%20Terahertz%20Graphene-Based%20Sensor%20for%20Breast%20Tumor%20Detection&rft.jtitle=IEEE%20sensors%20journal&rft.au=Hlali,%20Aymen&rft.date=2021-04-15&rft.volume=21&rft.issue=8&rft.spage=9844&rft.epage=9851&rft.pages=9844-9851&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3060326&rft_dat=%3Cproquest_RIE%3E2503501159%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503501159&rft_id=info:pmid/&rft_ieee_id=9357347&rfr_iscdi=true