The Open Question of How GPCRs Interact with GPCR Kinases (GRKs)

G protein-coupled receptors (GPCRs), which regulate a vast number of eukaryotic processes, are desensitized by various mechanisms but, most importantly, by the GPCR kinases (GRKs). Ever since GRKs were first identified, investigators have sought to determine which structural features of GRKs are use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecules (Basel, Switzerland) Switzerland), 2021-03, Vol.11 (3), p.447, Article 447
Hauptverfasser: Cato, M. Claire, Yen, Yu-Chen, Francis, Charnelle J., Elkins, Kaely E., Shareef, Afzaal, Sterne-Marr, Rachel, Tesmer, John J. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 447
container_title Biomolecules (Basel, Switzerland)
container_volume 11
creator Cato, M. Claire
Yen, Yu-Chen
Francis, Charnelle J.
Elkins, Kaely E.
Shareef, Afzaal
Sterne-Marr, Rachel
Tesmer, John J. G.
description G protein-coupled receptors (GPCRs), which regulate a vast number of eukaryotic processes, are desensitized by various mechanisms but, most importantly, by the GPCR kinases (GRKs). Ever since GRKs were first identified, investigators have sought to determine which structural features of GRKs are used to select for the agonist-bound states of GPCRs and how this binding event in turn enhances GRK catalytic activity. Despite a wealth of molecular information from high-resolution crystal structures of GRKs, the mechanisms driving activation have remained elusive, in part because the GRK N-terminus and active site tether region, previously proposed to serve as a receptor docking site and to be key to kinase domain closure, are often disordered or adopt inconsistent conformations. However, two recent studies have implicated other regions of GRKs as being involved in direct interactions with active GPCRs. Atomic resolution structures of GPCR-GRK complexes would help refine these models but are, so far, lacking. Here, we assess three distinct models for how GRKs recognize activated GPCRs, discuss limitations in the approaches used to generate them, and then experimentally test a hypothetical GPCR interaction site in GRK2 suggested by the two newest models.
doi_str_mv 10.3390/biom11030447
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2503480953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_508ef251ec474ab68688bf3ebddf44fa</doaj_id><sourcerecordid>2508581827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-65766b4726a14ac70beef1d50725d612eed4fe52a47530e7ed5fc55203b3aff53</originalsourceid><addsrcrecordid>eNqNks9rFDEUx4Motqy9eZYBLxVdzc9JeinKoNulhWqp4C1kMi_dLLPJmsy6-N-b6dZl68kQSHj5vG9evi8IvST4PWNn-EPr44oQzDDn8gk6ppSoKZXsx9OD_RE6yXmJy1BlUvYcHTGmMJW1OEYfbxdQXa8hVN82kAcfQxVddRG31exrc5OreRggGTtUWz8s7mPVpQ8mQ65OZzeX-c0L9MyZPsPJwzpB3798vm0uplfXs3nz6WpquVTDtBayrlsuaW0IN1biFsCRTmBJRVcTCtBxB4IaLgXDIKETzgpBMWuZcU6wCZrvdLtolnqd_Mqk3zoar-8DMd1pkwZve9ACK3BUEChXc9PWqlaqdQzarnOcO1O0znda6027gs5CGJLpH4k-Pgl-oe_iL10MpEypInD6IJDiz9E3vfLZQt-bAHGTNS0lCEVUsX-CXv-DLuMmhWLVSDGu8JlghXq3o2yKOSdw-2II1mOn9WGnC_7q8AF7-G9fC6B2wBba6LL1ECzssfIValZUpRh_BWn8YMbON3EThpL69v9T2R-nasJe</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503480953</pqid></control><display><type>article</type><title>The Open Question of How GPCRs Interact with GPCR Kinases (GRKs)</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cato, M. Claire ; Yen, Yu-Chen ; Francis, Charnelle J. ; Elkins, Kaely E. ; Shareef, Afzaal ; Sterne-Marr, Rachel ; Tesmer, John J. G.</creator><creatorcontrib>Cato, M. Claire ; Yen, Yu-Chen ; Francis, Charnelle J. ; Elkins, Kaely E. ; Shareef, Afzaal ; Sterne-Marr, Rachel ; Tesmer, John J. G.</creatorcontrib><description>G protein-coupled receptors (GPCRs), which regulate a vast number of eukaryotic processes, are desensitized by various mechanisms but, most importantly, by the GPCR kinases (GRKs). Ever since GRKs were first identified, investigators have sought to determine which structural features of GRKs are used to select for the agonist-bound states of GPCRs and how this binding event in turn enhances GRK catalytic activity. Despite a wealth of molecular information from high-resolution crystal structures of GRKs, the mechanisms driving activation have remained elusive, in part because the GRK N-terminus and active site tether region, previously proposed to serve as a receptor docking site and to be key to kinase domain closure, are often disordered or adopt inconsistent conformations. However, two recent studies have implicated other regions of GRKs as being involved in direct interactions with active GPCRs. Atomic resolution structures of GPCR-GRK complexes would help refine these models but are, so far, lacking. Here, we assess three distinct models for how GRKs recognize activated GPCRs, discuss limitations in the approaches used to generate them, and then experimentally test a hypothetical GPCR interaction site in GRK2 suggested by the two newest models.</description><identifier>ISSN: 2218-273X</identifier><identifier>EISSN: 2218-273X</identifier><identifier>DOI: 10.3390/biom11030447</identifier><identifier>PMID: 33802765</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Adrenergic receptors ; allostery ; b-Adrenergic-receptor kinase ; Biochemistry &amp; Molecular Biology ; complexes ; G protein-coupled receptor ; G protein-coupled receptor kinase ; G protein-coupled receptors ; Kinases ; Life Sciences &amp; Biomedicine ; N-Terminus ; Peptides ; Phosphorylation ; protein structure ; Proteins ; Science &amp; Technology ; Signal transduction</subject><ispartof>Biomolecules (Basel, Switzerland), 2021-03, Vol.11 (3), p.447, Article 447</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000633397500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-65766b4726a14ac70beef1d50725d612eed4fe52a47530e7ed5fc55203b3aff53</citedby><cites>FETCH-LOGICAL-c478t-65766b4726a14ac70beef1d50725d612eed4fe52a47530e7ed5fc55203b3aff53</cites><orcidid>0000-0002-5621-8151 ; 0000-0003-4308-9167 ; 0000-0003-1125-3727 ; 0000-0002-3063-3891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33802765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cato, M. Claire</creatorcontrib><creatorcontrib>Yen, Yu-Chen</creatorcontrib><creatorcontrib>Francis, Charnelle J.</creatorcontrib><creatorcontrib>Elkins, Kaely E.</creatorcontrib><creatorcontrib>Shareef, Afzaal</creatorcontrib><creatorcontrib>Sterne-Marr, Rachel</creatorcontrib><creatorcontrib>Tesmer, John J. G.</creatorcontrib><title>The Open Question of How GPCRs Interact with GPCR Kinases (GRKs)</title><title>Biomolecules (Basel, Switzerland)</title><addtitle>BIOMOLECULES</addtitle><addtitle>Biomolecules</addtitle><description>G protein-coupled receptors (GPCRs), which regulate a vast number of eukaryotic processes, are desensitized by various mechanisms but, most importantly, by the GPCR kinases (GRKs). Ever since GRKs were first identified, investigators have sought to determine which structural features of GRKs are used to select for the agonist-bound states of GPCRs and how this binding event in turn enhances GRK catalytic activity. Despite a wealth of molecular information from high-resolution crystal structures of GRKs, the mechanisms driving activation have remained elusive, in part because the GRK N-terminus and active site tether region, previously proposed to serve as a receptor docking site and to be key to kinase domain closure, are often disordered or adopt inconsistent conformations. However, two recent studies have implicated other regions of GRKs as being involved in direct interactions with active GPCRs. Atomic resolution structures of GPCR-GRK complexes would help refine these models but are, so far, lacking. Here, we assess three distinct models for how GRKs recognize activated GPCRs, discuss limitations in the approaches used to generate them, and then experimentally test a hypothetical GPCR interaction site in GRK2 suggested by the two newest models.</description><subject>Adrenergic receptors</subject><subject>allostery</subject><subject>b-Adrenergic-receptor kinase</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>complexes</subject><subject>G protein-coupled receptor</subject><subject>G protein-coupled receptor kinase</subject><subject>G protein-coupled receptors</subject><subject>Kinases</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>N-Terminus</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>protein structure</subject><subject>Proteins</subject><subject>Science &amp; Technology</subject><subject>Signal transduction</subject><issn>2218-273X</issn><issn>2218-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks9rFDEUx4Motqy9eZYBLxVdzc9JeinKoNulhWqp4C1kMi_dLLPJmsy6-N-b6dZl68kQSHj5vG9evi8IvST4PWNn-EPr44oQzDDn8gk6ppSoKZXsx9OD_RE6yXmJy1BlUvYcHTGmMJW1OEYfbxdQXa8hVN82kAcfQxVddRG31exrc5OreRggGTtUWz8s7mPVpQ8mQ65OZzeX-c0L9MyZPsPJwzpB3798vm0uplfXs3nz6WpquVTDtBayrlsuaW0IN1biFsCRTmBJRVcTCtBxB4IaLgXDIKETzgpBMWuZcU6wCZrvdLtolnqd_Mqk3zoar-8DMd1pkwZve9ACK3BUEChXc9PWqlaqdQzarnOcO1O0znda6027gs5CGJLpH4k-Pgl-oe_iL10MpEypInD6IJDiz9E3vfLZQt-bAHGTNS0lCEVUsX-CXv-DLuMmhWLVSDGu8JlghXq3o2yKOSdw-2II1mOn9WGnC_7q8AF7-G9fC6B2wBba6LL1ECzssfIValZUpRh_BWn8YMbON3EThpL69v9T2R-nasJe</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Cato, M. Claire</creator><creator>Yen, Yu-Chen</creator><creator>Francis, Charnelle J.</creator><creator>Elkins, Kaely E.</creator><creator>Shareef, Afzaal</creator><creator>Sterne-Marr, Rachel</creator><creator>Tesmer, John J. G.</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5621-8151</orcidid><orcidid>https://orcid.org/0000-0003-4308-9167</orcidid><orcidid>https://orcid.org/0000-0003-1125-3727</orcidid><orcidid>https://orcid.org/0000-0002-3063-3891</orcidid></search><sort><creationdate>20210317</creationdate><title>The Open Question of How GPCRs Interact with GPCR Kinases (GRKs)</title><author>Cato, M. Claire ; Yen, Yu-Chen ; Francis, Charnelle J. ; Elkins, Kaely E. ; Shareef, Afzaal ; Sterne-Marr, Rachel ; Tesmer, John J. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-65766b4726a14ac70beef1d50725d612eed4fe52a47530e7ed5fc55203b3aff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adrenergic receptors</topic><topic>allostery</topic><topic>b-Adrenergic-receptor kinase</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>complexes</topic><topic>G protein-coupled receptor</topic><topic>G protein-coupled receptor kinase</topic><topic>G protein-coupled receptors</topic><topic>Kinases</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>N-Terminus</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>protein structure</topic><topic>Proteins</topic><topic>Science &amp; Technology</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cato, M. Claire</creatorcontrib><creatorcontrib>Yen, Yu-Chen</creatorcontrib><creatorcontrib>Francis, Charnelle J.</creatorcontrib><creatorcontrib>Elkins, Kaely E.</creatorcontrib><creatorcontrib>Shareef, Afzaal</creatorcontrib><creatorcontrib>Sterne-Marr, Rachel</creatorcontrib><creatorcontrib>Tesmer, John J. G.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomolecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cato, M. Claire</au><au>Yen, Yu-Chen</au><au>Francis, Charnelle J.</au><au>Elkins, Kaely E.</au><au>Shareef, Afzaal</au><au>Sterne-Marr, Rachel</au><au>Tesmer, John J. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Open Question of How GPCRs Interact with GPCR Kinases (GRKs)</atitle><jtitle>Biomolecules (Basel, Switzerland)</jtitle><stitle>BIOMOLECULES</stitle><addtitle>Biomolecules</addtitle><date>2021-03-17</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>447</spage><pages>447-</pages><artnum>447</artnum><issn>2218-273X</issn><eissn>2218-273X</eissn><abstract>G protein-coupled receptors (GPCRs), which regulate a vast number of eukaryotic processes, are desensitized by various mechanisms but, most importantly, by the GPCR kinases (GRKs). Ever since GRKs were first identified, investigators have sought to determine which structural features of GRKs are used to select for the agonist-bound states of GPCRs and how this binding event in turn enhances GRK catalytic activity. Despite a wealth of molecular information from high-resolution crystal structures of GRKs, the mechanisms driving activation have remained elusive, in part because the GRK N-terminus and active site tether region, previously proposed to serve as a receptor docking site and to be key to kinase domain closure, are often disordered or adopt inconsistent conformations. However, two recent studies have implicated other regions of GRKs as being involved in direct interactions with active GPCRs. Atomic resolution structures of GPCR-GRK complexes would help refine these models but are, so far, lacking. Here, we assess three distinct models for how GRKs recognize activated GPCRs, discuss limitations in the approaches used to generate them, and then experimentally test a hypothetical GPCR interaction site in GRK2 suggested by the two newest models.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33802765</pmid><doi>10.3390/biom11030447</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5621-8151</orcidid><orcidid>https://orcid.org/0000-0003-4308-9167</orcidid><orcidid>https://orcid.org/0000-0003-1125-3727</orcidid><orcidid>https://orcid.org/0000-0002-3063-3891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2218-273X
ispartof Biomolecules (Basel, Switzerland), 2021-03, Vol.11 (3), p.447, Article 447
issn 2218-273X
2218-273X
language eng
recordid cdi_proquest_journals_2503480953
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adrenergic receptors
allostery
b-Adrenergic-receptor kinase
Biochemistry & Molecular Biology
complexes
G protein-coupled receptor
G protein-coupled receptor kinase
G protein-coupled receptors
Kinases
Life Sciences & Biomedicine
N-Terminus
Peptides
Phosphorylation
protein structure
Proteins
Science & Technology
Signal transduction
title The Open Question of How GPCRs Interact with GPCR Kinases (GRKs)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T21%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Open%20Question%20of%20How%20GPCRs%20Interact%20with%20GPCR%20Kinases%20(GRKs)&rft.jtitle=Biomolecules%20(Basel,%20Switzerland)&rft.au=Cato,%20M.%20Claire&rft.date=2021-03-17&rft.volume=11&rft.issue=3&rft.spage=447&rft.pages=447-&rft.artnum=447&rft.issn=2218-273X&rft.eissn=2218-273X&rft_id=info:doi/10.3390/biom11030447&rft_dat=%3Cproquest_webof%3E2508581827%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503480953&rft_id=info:pmid/33802765&rft_doaj_id=oai_doaj_org_article_508ef251ec474ab68688bf3ebddf44fa&rfr_iscdi=true