Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals

•Renewable and low-cost nitrocellulose nanocrystals (NCNCs) are used as the sensing film of humidity sensor.•NCNCs film exhibited smooth surface with low RMS roughness 9.42 nm.•NCNCs-coated QCM sensors exhibit high sensitivity, selectivity, stability, and repeatability.•Detailed investigation of hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2021-01, Vol.327, p.128944, Article 128944
Hauptverfasser: Tang, Lirong, Chen, Weixiang, Chen, Bo, Lv, Rixin, Zheng, Xinyu, Rong, Cheng, Lu, Beili, Huang, Biao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 128944
container_title Sensors and actuators. B, Chemical
container_volume 327
creator Tang, Lirong
Chen, Weixiang
Chen, Bo
Lv, Rixin
Zheng, Xinyu
Rong, Cheng
Lu, Beili
Huang, Biao
description •Renewable and low-cost nitrocellulose nanocrystals (NCNCs) are used as the sensing film of humidity sensor.•NCNCs film exhibited smooth surface with low RMS roughness 9.42 nm.•NCNCs-coated QCM sensors exhibit high sensitivity, selectivity, stability, and repeatability.•Detailed investigation of humidity sensing mechanism. High-sensitivity and inexpensive humidity sensors with rapid response are crucial for humidity detection. In this study, a quartz crystal microbalance (QCM) sensor based on nitro-modified cellulose nanocrystals (NCNCs) films were developed for rapid and sensitive detection of humidity. The NCNCs films with good hydrophilicity along with fast water adsorption and dehydration were used as the humidity sensitive material. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction were used to examine the chemical and crystalline properties of NCNCs. The morphology, roughness, and thickness of NCNCs deposited on the QCM silver electrode were characterized by atomic force microscopy and field emission scanning electron microscopy. The results confirmed that the humidity sensor with NCNCs loading of 2.67 μg (QCM-4) exhibited high sensitivity (25.6 Hz/% RH) and extremely small response/recovery times (18 s / 10 s). In addition, the sensor showed excellent reliability and logarithmic linearity in 11−84 % relative humidity (RH). The adsorption of water on the surfaces of NCNCs and the sensing mechanism was examined by density functional theory (DFT) simulation. From the perspective of a sustainable and renewable material, low-cost NCNCs with high humidity sensitivity seem to be the ideal material for developing high-performance sensors with multiple potential applications.
doi_str_mv 10.1016/j.snb.2020.128944
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503463237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400520312910</els_id><sourcerecordid>2503463237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-69bb26b6fa7f6853023ac717ab15c4839435363b17934d754888b7d68d729cf63</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF3A9dS8JpnBlRRfUHChrkOSydCUadImmUr99aaMa1eHC-ece-8HwC1GC4wwv98sktcLgkiZSdMydgZmuBG0okiIczBDLakrhlB9Ca5S2iCEGOVoBtYf1ieX3cFC5TsYrbffSg8W7kcV8w808ZiyGuDWmRi0GpQ3Fq7HretcPsJUwiFCrZLtYPDQuxyDscMwDiFZ6JUPfwXpGlz0RezNn87B1_PT5_K1Wr2_vC0fV5WhLc4Vb7UmXPNeiZ43NUWEKiOwUBrXhjW0ZbSmnGosWso6UbOmabToeNMJ0pqe0zm4m3p3MexHm7LchDH6slKSGlHGKaGiuPDkKl-lFG0vd9FtVTxKjOQJqNzIAlSegMoJaMk8TBlbzj84G2UyzhYenYvWZNkF90_6F9NMf0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503463237</pqid></control><display><type>article</type><title>Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tang, Lirong ; Chen, Weixiang ; Chen, Bo ; Lv, Rixin ; Zheng, Xinyu ; Rong, Cheng ; Lu, Beili ; Huang, Biao</creator><creatorcontrib>Tang, Lirong ; Chen, Weixiang ; Chen, Bo ; Lv, Rixin ; Zheng, Xinyu ; Rong, Cheng ; Lu, Beili ; Huang, Biao</creatorcontrib><description>•Renewable and low-cost nitrocellulose nanocrystals (NCNCs) are used as the sensing film of humidity sensor.•NCNCs film exhibited smooth surface with low RMS roughness 9.42 nm.•NCNCs-coated QCM sensors exhibit high sensitivity, selectivity, stability, and repeatability.•Detailed investigation of humidity sensing mechanism. High-sensitivity and inexpensive humidity sensors with rapid response are crucial for humidity detection. In this study, a quartz crystal microbalance (QCM) sensor based on nitro-modified cellulose nanocrystals (NCNCs) films were developed for rapid and sensitive detection of humidity. The NCNCs films with good hydrophilicity along with fast water adsorption and dehydration were used as the humidity sensitive material. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction were used to examine the chemical and crystalline properties of NCNCs. The morphology, roughness, and thickness of NCNCs deposited on the QCM silver electrode were characterized by atomic force microscopy and field emission scanning electron microscopy. The results confirmed that the humidity sensor with NCNCs loading of 2.67 μg (QCM-4) exhibited high sensitivity (25.6 Hz/% RH) and extremely small response/recovery times (18 s / 10 s). In addition, the sensor showed excellent reliability and logarithmic linearity in 11−84 % relative humidity (RH). The adsorption of water on the surfaces of NCNCs and the sensing mechanism was examined by density functional theory (DFT) simulation. From the perspective of a sustainable and renewable material, low-cost NCNCs with high humidity sensitivity seem to be the ideal material for developing high-performance sensors with multiple potential applications.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2020.128944</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adsorbed water ; Adsorption ; Atomic force microscopy ; Cellulose esters ; Cellulose nitrate ; Dehydration ; Density functional theory ; Field emission microscopy ; Fourier transforms ; Humidity ; Humidity sensor ; Linearity ; Microbalances ; Microscopy ; Morphology ; Nanocrystals ; Nitrocellulose nanocrystals (NCNCs) ; Photoelectrons ; Quartz ; Quartz crystal microbalance ; Quartz crystals ; Relative humidity ; Renewable ; Sensitive ; Sensitivity ; Sensors ; Spectrum analysis ; X ray photoelectron spectroscopy</subject><ispartof>Sensors and actuators. B, Chemical, 2021-01, Vol.327, p.128944, Article 128944</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-69bb26b6fa7f6853023ac717ab15c4839435363b17934d754888b7d68d729cf63</citedby><cites>FETCH-LOGICAL-c391t-69bb26b6fa7f6853023ac717ab15c4839435363b17934d754888b7d68d729cf63</cites><orcidid>0000-0002-3992-2665</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2020.128944$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tang, Lirong</creatorcontrib><creatorcontrib>Chen, Weixiang</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Lv, Rixin</creatorcontrib><creatorcontrib>Zheng, Xinyu</creatorcontrib><creatorcontrib>Rong, Cheng</creatorcontrib><creatorcontrib>Lu, Beili</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><title>Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals</title><title>Sensors and actuators. B, Chemical</title><description>•Renewable and low-cost nitrocellulose nanocrystals (NCNCs) are used as the sensing film of humidity sensor.•NCNCs film exhibited smooth surface with low RMS roughness 9.42 nm.•NCNCs-coated QCM sensors exhibit high sensitivity, selectivity, stability, and repeatability.•Detailed investigation of humidity sensing mechanism. High-sensitivity and inexpensive humidity sensors with rapid response are crucial for humidity detection. In this study, a quartz crystal microbalance (QCM) sensor based on nitro-modified cellulose nanocrystals (NCNCs) films were developed for rapid and sensitive detection of humidity. The NCNCs films with good hydrophilicity along with fast water adsorption and dehydration were used as the humidity sensitive material. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction were used to examine the chemical and crystalline properties of NCNCs. The morphology, roughness, and thickness of NCNCs deposited on the QCM silver electrode were characterized by atomic force microscopy and field emission scanning electron microscopy. The results confirmed that the humidity sensor with NCNCs loading of 2.67 μg (QCM-4) exhibited high sensitivity (25.6 Hz/% RH) and extremely small response/recovery times (18 s / 10 s). In addition, the sensor showed excellent reliability and logarithmic linearity in 11−84 % relative humidity (RH). The adsorption of water on the surfaces of NCNCs and the sensing mechanism was examined by density functional theory (DFT) simulation. From the perspective of a sustainable and renewable material, low-cost NCNCs with high humidity sensitivity seem to be the ideal material for developing high-performance sensors with multiple potential applications.</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Atomic force microscopy</subject><subject>Cellulose esters</subject><subject>Cellulose nitrate</subject><subject>Dehydration</subject><subject>Density functional theory</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Humidity</subject><subject>Humidity sensor</subject><subject>Linearity</subject><subject>Microbalances</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Nitrocellulose nanocrystals (NCNCs)</subject><subject>Photoelectrons</subject><subject>Quartz</subject><subject>Quartz crystal microbalance</subject><subject>Quartz crystals</subject><subject>Relative humidity</subject><subject>Renewable</subject><subject>Sensitive</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF3A9dS8JpnBlRRfUHChrkOSydCUadImmUr99aaMa1eHC-ece-8HwC1GC4wwv98sktcLgkiZSdMydgZmuBG0okiIczBDLakrhlB9Ca5S2iCEGOVoBtYf1ieX3cFC5TsYrbffSg8W7kcV8w808ZiyGuDWmRi0GpQ3Fq7HretcPsJUwiFCrZLtYPDQuxyDscMwDiFZ6JUPfwXpGlz0RezNn87B1_PT5_K1Wr2_vC0fV5WhLc4Vb7UmXPNeiZ43NUWEKiOwUBrXhjW0ZbSmnGosWso6UbOmabToeNMJ0pqe0zm4m3p3MexHm7LchDH6slKSGlHGKaGiuPDkKl-lFG0vd9FtVTxKjOQJqNzIAlSegMoJaMk8TBlbzj84G2UyzhYenYvWZNkF90_6F9NMf0Q</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Tang, Lirong</creator><creator>Chen, Weixiang</creator><creator>Chen, Bo</creator><creator>Lv, Rixin</creator><creator>Zheng, Xinyu</creator><creator>Rong, Cheng</creator><creator>Lu, Beili</creator><creator>Huang, Biao</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3992-2665</orcidid></search><sort><creationdate>20210115</creationdate><title>Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals</title><author>Tang, Lirong ; Chen, Weixiang ; Chen, Bo ; Lv, Rixin ; Zheng, Xinyu ; Rong, Cheng ; Lu, Beili ; Huang, Biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-69bb26b6fa7f6853023ac717ab15c4839435363b17934d754888b7d68d729cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Atomic force microscopy</topic><topic>Cellulose esters</topic><topic>Cellulose nitrate</topic><topic>Dehydration</topic><topic>Density functional theory</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Humidity</topic><topic>Humidity sensor</topic><topic>Linearity</topic><topic>Microbalances</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Nitrocellulose nanocrystals (NCNCs)</topic><topic>Photoelectrons</topic><topic>Quartz</topic><topic>Quartz crystal microbalance</topic><topic>Quartz crystals</topic><topic>Relative humidity</topic><topic>Renewable</topic><topic>Sensitive</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Lirong</creatorcontrib><creatorcontrib>Chen, Weixiang</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Lv, Rixin</creatorcontrib><creatorcontrib>Zheng, Xinyu</creatorcontrib><creatorcontrib>Rong, Cheng</creatorcontrib><creatorcontrib>Lu, Beili</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Lirong</au><au>Chen, Weixiang</au><au>Chen, Bo</au><au>Lv, Rixin</au><au>Zheng, Xinyu</au><au>Rong, Cheng</au><au>Lu, Beili</au><au>Huang, Biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>327</volume><spage>128944</spage><pages>128944-</pages><artnum>128944</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•Renewable and low-cost nitrocellulose nanocrystals (NCNCs) are used as the sensing film of humidity sensor.•NCNCs film exhibited smooth surface with low RMS roughness 9.42 nm.•NCNCs-coated QCM sensors exhibit high sensitivity, selectivity, stability, and repeatability.•Detailed investigation of humidity sensing mechanism. High-sensitivity and inexpensive humidity sensors with rapid response are crucial for humidity detection. In this study, a quartz crystal microbalance (QCM) sensor based on nitro-modified cellulose nanocrystals (NCNCs) films were developed for rapid and sensitive detection of humidity. The NCNCs films with good hydrophilicity along with fast water adsorption and dehydration were used as the humidity sensitive material. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction were used to examine the chemical and crystalline properties of NCNCs. The morphology, roughness, and thickness of NCNCs deposited on the QCM silver electrode were characterized by atomic force microscopy and field emission scanning electron microscopy. The results confirmed that the humidity sensor with NCNCs loading of 2.67 μg (QCM-4) exhibited high sensitivity (25.6 Hz/% RH) and extremely small response/recovery times (18 s / 10 s). In addition, the sensor showed excellent reliability and logarithmic linearity in 11−84 % relative humidity (RH). The adsorption of water on the surfaces of NCNCs and the sensing mechanism was examined by density functional theory (DFT) simulation. From the perspective of a sustainable and renewable material, low-cost NCNCs with high humidity sensitivity seem to be the ideal material for developing high-performance sensors with multiple potential applications.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2020.128944</doi><orcidid>https://orcid.org/0000-0002-3992-2665</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2021-01, Vol.327, p.128944, Article 128944
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2503463237
source Access via ScienceDirect (Elsevier)
subjects Adsorbed water
Adsorption
Atomic force microscopy
Cellulose esters
Cellulose nitrate
Dehydration
Density functional theory
Field emission microscopy
Fourier transforms
Humidity
Humidity sensor
Linearity
Microbalances
Microscopy
Morphology
Nanocrystals
Nitrocellulose nanocrystals (NCNCs)
Photoelectrons
Quartz
Quartz crystal microbalance
Quartz crystals
Relative humidity
Renewable
Sensitive
Sensitivity
Sensors
Spectrum analysis
X ray photoelectron spectroscopy
title Sensitive and renewable quartz crystal microbalance humidity sensor based on nitrocellulose nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitive%20and%20renewable%20quartz%20crystal%20microbalance%20humidity%20sensor%20based%20on%20nitrocellulose%20nanocrystals&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Tang,%20Lirong&rft.date=2021-01-15&rft.volume=327&rft.spage=128944&rft.pages=128944-&rft.artnum=128944&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2020.128944&rft_dat=%3Cproquest_cross%3E2503463237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503463237&rft_id=info:pmid/&rft_els_id=S0925400520312910&rfr_iscdi=true