Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4

•Deep transfer learning for disease detection in tomato leaves.•Evaluation and analysis from CNN models to select more suitable for a specific task.•Raspberry Pi 4 implementation for real-field operations.•GUI designed for easy usage. Deep learning has made essential contributions to classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2021-02, Vol.181, p.105951, Article 105951
Hauptverfasser: Gonzalez-Huitron, Victor, León-Borges, José A., Rodriguez-Mata, A.E., Amabilis-Sosa, Leonel Ernesto, Ramírez-Pereda, Blenda, Rodriguez, Hector
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105951
container_title Computers and electronics in agriculture
container_volume 181
creator Gonzalez-Huitron, Victor
León-Borges, José A.
Rodriguez-Mata, A.E.
Amabilis-Sosa, Leonel Ernesto
Ramírez-Pereda, Blenda
Rodriguez, Hector
description •Deep transfer learning for disease detection in tomato leaves.•Evaluation and analysis from CNN models to select more suitable for a specific task.•Raspberry Pi 4 implementation for real-field operations.•GUI designed for easy usage. Deep learning has made essential contributions to classification and detection tasks applied to precision agriculture; however, it is vitally important to move towards an adoption of these techniques and algorithms through low-cost and low-consumption devices for daily use in crop fields. In this paper, we present the training and evaluation of four recent Convolutional Neural Networks models for the classification of diseases in tomato leaves. A subset of the Plantvillage dataset consisting of 18,160 RGB images has been divided into ten classes for transfer learning. The selected models have depthwise separable convolution architecture for application in low-power devices. Evaluation and analysis quantitatively and qualitatively is performed via quality metrics and saliency maps. Finally, an implementation on the Raspberry Pi 4 microcomputer with a graphical user interface is developed.
doi_str_mv 10.1016/j.compag.2020.105951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503462990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169920331562</els_id><sourcerecordid>2503462990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a111feb8fe13b950dd00881dd817ca204658d8bfc7ea73e222b3c1531571000f3</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKv_wIeAz1tz2Uv2RZB6hVJF9Dlkk9k2S_dikrb4782yPvsywwznnGE-hK4pWVBC89tmoft2UJsFI2xcZWVGT9CMioIlBSXFKZpFmUhoXpbn6ML7hsS5FMUMbR6sB-UBGwigg-07bDsc-laFHu9AHcDjg1V4uV7jow1bvLObbTjCWLFyemtH295FmW2HHbTQBTBjxofyQwXO_eB3i9NLdFarnYervz5HX0-Pn8uXZPX2_Lq8XyWa8zQkilJaQyVqoLwqM2IMIUJQYwQttGIkzTNhRFXrAlTBgTFWcU0zTrP4JyE1n6ObKXdw_fcefJBNv3ddPClZRnias7IkUZVOKu167x3UcnC2Ve5HUiJHpLKRE1I5IpUT0mi7m2wQPzhYcNJrC50GY12kIE1v_w_4BcirgUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503462990</pqid></control><display><type>article</type><title>Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gonzalez-Huitron, Victor ; León-Borges, José A. ; Rodriguez-Mata, A.E. ; Amabilis-Sosa, Leonel Ernesto ; Ramírez-Pereda, Blenda ; Rodriguez, Hector</creator><creatorcontrib>Gonzalez-Huitron, Victor ; León-Borges, José A. ; Rodriguez-Mata, A.E. ; Amabilis-Sosa, Leonel Ernesto ; Ramírez-Pereda, Blenda ; Rodriguez, Hector</creatorcontrib><description>•Deep transfer learning for disease detection in tomato leaves.•Evaluation and analysis from CNN models to select more suitable for a specific task.•Raspberry Pi 4 implementation for real-field operations.•GUI designed for easy usage. Deep learning has made essential contributions to classification and detection tasks applied to precision agriculture; however, it is vitally important to move towards an adoption of these techniques and algorithms through low-cost and low-consumption devices for daily use in crop fields. In this paper, we present the training and evaluation of four recent Convolutional Neural Networks models for the classification of diseases in tomato leaves. A subset of the Plantvillage dataset consisting of 18,160 RGB images has been divided into ten classes for transfer learning. The selected models have depthwise separable convolution architecture for application in low-power devices. Evaluation and analysis quantitatively and qualitatively is performed via quality metrics and saliency maps. Finally, an implementation on the Raspberry Pi 4 microcomputer with a graphical user interface is developed.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2020.105951</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Artificial neural networks ; Classification ; Color imagery ; Convolution ; Deep learning ; Electronic devices ; Evaluation ; Graphical user interface ; Image processing ; Machine learning ; Plant disease classification ; Precision agriculture ; Tomatoes</subject><ispartof>Computers and electronics in agriculture, 2021-02, Vol.181, p.105951, Article 105951</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a111feb8fe13b950dd00881dd817ca204658d8bfc7ea73e222b3c1531571000f3</citedby><cites>FETCH-LOGICAL-c334t-a111feb8fe13b950dd00881dd817ca204658d8bfc7ea73e222b3c1531571000f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compag.2020.105951$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Gonzalez-Huitron, Victor</creatorcontrib><creatorcontrib>León-Borges, José A.</creatorcontrib><creatorcontrib>Rodriguez-Mata, A.E.</creatorcontrib><creatorcontrib>Amabilis-Sosa, Leonel Ernesto</creatorcontrib><creatorcontrib>Ramírez-Pereda, Blenda</creatorcontrib><creatorcontrib>Rodriguez, Hector</creatorcontrib><title>Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4</title><title>Computers and electronics in agriculture</title><description>•Deep transfer learning for disease detection in tomato leaves.•Evaluation and analysis from CNN models to select more suitable for a specific task.•Raspberry Pi 4 implementation for real-field operations.•GUI designed for easy usage. Deep learning has made essential contributions to classification and detection tasks applied to precision agriculture; however, it is vitally important to move towards an adoption of these techniques and algorithms through low-cost and low-consumption devices for daily use in crop fields. In this paper, we present the training and evaluation of four recent Convolutional Neural Networks models for the classification of diseases in tomato leaves. A subset of the Plantvillage dataset consisting of 18,160 RGB images has been divided into ten classes for transfer learning. The selected models have depthwise separable convolution architecture for application in low-power devices. Evaluation and analysis quantitatively and qualitatively is performed via quality metrics and saliency maps. Finally, an implementation on the Raspberry Pi 4 microcomputer with a graphical user interface is developed.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Color imagery</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Electronic devices</subject><subject>Evaluation</subject><subject>Graphical user interface</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Plant disease classification</subject><subject>Precision agriculture</subject><subject>Tomatoes</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKv_wIeAz1tz2Uv2RZB6hVJF9Dlkk9k2S_dikrb4782yPvsywwznnGE-hK4pWVBC89tmoft2UJsFI2xcZWVGT9CMioIlBSXFKZpFmUhoXpbn6ML7hsS5FMUMbR6sB-UBGwigg-07bDsc-laFHu9AHcDjg1V4uV7jow1bvLObbTjCWLFyemtH295FmW2HHbTQBTBjxofyQwXO_eB3i9NLdFarnYervz5HX0-Pn8uXZPX2_Lq8XyWa8zQkilJaQyVqoLwqM2IMIUJQYwQttGIkzTNhRFXrAlTBgTFWcU0zTrP4JyE1n6ObKXdw_fcefJBNv3ddPClZRnias7IkUZVOKu167x3UcnC2Ve5HUiJHpLKRE1I5IpUT0mi7m2wQPzhYcNJrC50GY12kIE1v_w_4BcirgUg</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Gonzalez-Huitron, Victor</creator><creator>León-Borges, José A.</creator><creator>Rodriguez-Mata, A.E.</creator><creator>Amabilis-Sosa, Leonel Ernesto</creator><creator>Ramírez-Pereda, Blenda</creator><creator>Rodriguez, Hector</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202102</creationdate><title>Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4</title><author>Gonzalez-Huitron, Victor ; León-Borges, José A. ; Rodriguez-Mata, A.E. ; Amabilis-Sosa, Leonel Ernesto ; Ramírez-Pereda, Blenda ; Rodriguez, Hector</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a111feb8fe13b950dd00881dd817ca204658d8bfc7ea73e222b3c1531571000f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Color imagery</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Electronic devices</topic><topic>Evaluation</topic><topic>Graphical user interface</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Plant disease classification</topic><topic>Precision agriculture</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Huitron, Victor</creatorcontrib><creatorcontrib>León-Borges, José A.</creatorcontrib><creatorcontrib>Rodriguez-Mata, A.E.</creatorcontrib><creatorcontrib>Amabilis-Sosa, Leonel Ernesto</creatorcontrib><creatorcontrib>Ramírez-Pereda, Blenda</creatorcontrib><creatorcontrib>Rodriguez, Hector</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Huitron, Victor</au><au>León-Borges, José A.</au><au>Rodriguez-Mata, A.E.</au><au>Amabilis-Sosa, Leonel Ernesto</au><au>Ramírez-Pereda, Blenda</au><au>Rodriguez, Hector</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2021-02</date><risdate>2021</risdate><volume>181</volume><spage>105951</spage><pages>105951-</pages><artnum>105951</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>•Deep transfer learning for disease detection in tomato leaves.•Evaluation and analysis from CNN models to select more suitable for a specific task.•Raspberry Pi 4 implementation for real-field operations.•GUI designed for easy usage. Deep learning has made essential contributions to classification and detection tasks applied to precision agriculture; however, it is vitally important to move towards an adoption of these techniques and algorithms through low-cost and low-consumption devices for daily use in crop fields. In this paper, we present the training and evaluation of four recent Convolutional Neural Networks models for the classification of diseases in tomato leaves. A subset of the Plantvillage dataset consisting of 18,160 RGB images has been divided into ten classes for transfer learning. The selected models have depthwise separable convolution architecture for application in low-power devices. Evaluation and analysis quantitatively and qualitatively is performed via quality metrics and saliency maps. Finally, an implementation on the Raspberry Pi 4 microcomputer with a graphical user interface is developed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2020.105951</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2021-02, Vol.181, p.105951, Article 105951
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2503462990
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Artificial neural networks
Classification
Color imagery
Convolution
Deep learning
Electronic devices
Evaluation
Graphical user interface
Image processing
Machine learning
Plant disease classification
Precision agriculture
Tomatoes
title Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disease%20detection%20in%20tomato%20leaves%20via%20CNN%20with%20lightweight%20architectures%20implemented%20in%20Raspberry%20Pi%204&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Gonzalez-Huitron,%20Victor&rft.date=2021-02&rft.volume=181&rft.spage=105951&rft.pages=105951-&rft.artnum=105951&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2020.105951&rft_dat=%3Cproquest_cross%3E2503462990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503462990&rft_id=info:pmid/&rft_els_id=S0168169920331562&rfr_iscdi=true