A GIS-based approach for high-level distribution networks expansion planning in normal and contingency operation considering reliability
•GIS-based Mixed-Integer Linear programming (MILP) approach for DNs expansion planning.•Grouping secondary substations in primary substation clusters to obtain a cost-efficient, reliable, DN both in normal and in single contingency operating conditions.•Savings in terms of network extension reductio...
Gespeichert in:
Veröffentlicht in: | Electric power systems research 2021-01, Vol.190, p.106684, Article 106684 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106684 |
container_title | Electric power systems research |
container_volume | 190 |
creator | Bosisio, A. Berizzi, A. Amaldi, E. Bovo, C. Morotti, A. Greco, B. Iannarelli, G. |
description | •GIS-based Mixed-Integer Linear programming (MILP) approach for DNs expansion planning.•Grouping secondary substations in primary substation clusters to obtain a cost-efficient, reliable, DN both in normal and in single contingency operating conditions.•Savings in terms of network extension reduction while maintaining a high level of reliability.•Proposed approach validates with real data.
This paper presents a novel methodology for the Distribution Networks expansion planning based on Geographic Information Systems. The proposed methodology combines Delaunay Triangulation with a Mixed-Integer Linear Programming model in a 2-steps approach. Secondary substations are grouped in primary substation clusters, considering both normal and contingency operation. Topological and electrical constraints have to be fulfilled as well as a given level of reliability; the mathematical formulation includes feeder and substation constraints. The proposed methodology is expected to be only the first step of the whole network expansion planning. Hence, it has to be able to give macro information that planners can refine in the following steps of the planning process. A numerical case study on a real network illustrates the effectiveness of the proposed approach for the Distribution Network expansion planning problem. |
doi_str_mv | 10.1016/j.epsr.2020.106684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503462938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779620304879</els_id><sourcerecordid>2503462938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-5f015057a204ae4a507b586c9e2842b5d16506dba98c0b48291e3df3d95766243</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqXwA5wscU5xnNhxJC5VBQUJiQNwthx707qkdrBToH_AZ-NQzpwsPc_s7gxClzmZ5STn15sZ9DHMKKEj4FyUR2iSi6rIKCn5MZqQohJZVdX8FJ3FuCGE8LpiE_Q9x8uH56xREQxWfR-80mvc-oDXdrXOOviADhsbh2Cb3WC9ww6GTx_eIoavXrk4or5Tzlm3wjZ9-7BVHVbOYO3dkCg4vce-h6B-_YlGayCM-gCdVY3t7LA_Ryet6iJc_L1T9Hp3-7K4zx6flg-L-WOmCyqGjLUkZ4RVKuVSUCpGqoYJrmugoqQNMzlnhJtG1UKTphS0zqEwbWFqVnFOy2KKrg5zU9T3HcRBbvwuuLRSUkaKktO6EElFDyodfIwBWtkHu1VhL3Mix8blRo6Ny7FxeWg8mW4OJkj3f1gIMmqb0oOxAfQgjbf_2X8AK1eMGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503462938</pqid></control><display><type>article</type><title>A GIS-based approach for high-level distribution networks expansion planning in normal and contingency operation considering reliability</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bosisio, A. ; Berizzi, A. ; Amaldi, E. ; Bovo, C. ; Morotti, A. ; Greco, B. ; Iannarelli, G.</creator><creatorcontrib>Bosisio, A. ; Berizzi, A. ; Amaldi, E. ; Bovo, C. ; Morotti, A. ; Greco, B. ; Iannarelli, G.</creatorcontrib><description>•GIS-based Mixed-Integer Linear programming (MILP) approach for DNs expansion planning.•Grouping secondary substations in primary substation clusters to obtain a cost-efficient, reliable, DN both in normal and in single contingency operating conditions.•Savings in terms of network extension reduction while maintaining a high level of reliability.•Proposed approach validates with real data.
This paper presents a novel methodology for the Distribution Networks expansion planning based on Geographic Information Systems. The proposed methodology combines Delaunay Triangulation with a Mixed-Integer Linear Programming model in a 2-steps approach. Secondary substations are grouped in primary substation clusters, considering both normal and contingency operation. Topological and electrical constraints have to be fulfilled as well as a given level of reliability; the mathematical formulation includes feeder and substation constraints. The proposed methodology is expected to be only the first step of the whole network expansion planning. Hence, it has to be able to give macro information that planners can refine in the following steps of the planning process. A numerical case study on a real network illustrates the effectiveness of the proposed approach for the Distribution Network expansion planning problem.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2020.106684</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Contingency ; Delaunay triangulation ; Electricity distribution ; Expansion ; Expansion planning ; Geographic information systems ; Integer linear programming ; Integer programming ; Linear programming ; Methodology ; Mixed integer ; Network reliability ; Optimization ; Power system planning ; Power system reliability ; Substations</subject><ispartof>Electric power systems research, 2021-01, Vol.190, p.106684, Article 106684</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-5f015057a204ae4a507b586c9e2842b5d16506dba98c0b48291e3df3d95766243</citedby><cites>FETCH-LOGICAL-c328t-5f015057a204ae4a507b586c9e2842b5d16506dba98c0b48291e3df3d95766243</cites><orcidid>0000-0002-2856-783X ; 0000-0003-2690-4668 ; 0000-0002-6246-3495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsr.2020.106684$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bosisio, A.</creatorcontrib><creatorcontrib>Berizzi, A.</creatorcontrib><creatorcontrib>Amaldi, E.</creatorcontrib><creatorcontrib>Bovo, C.</creatorcontrib><creatorcontrib>Morotti, A.</creatorcontrib><creatorcontrib>Greco, B.</creatorcontrib><creatorcontrib>Iannarelli, G.</creatorcontrib><title>A GIS-based approach for high-level distribution networks expansion planning in normal and contingency operation considering reliability</title><title>Electric power systems research</title><description>•GIS-based Mixed-Integer Linear programming (MILP) approach for DNs expansion planning.•Grouping secondary substations in primary substation clusters to obtain a cost-efficient, reliable, DN both in normal and in single contingency operating conditions.•Savings in terms of network extension reduction while maintaining a high level of reliability.•Proposed approach validates with real data.
This paper presents a novel methodology for the Distribution Networks expansion planning based on Geographic Information Systems. The proposed methodology combines Delaunay Triangulation with a Mixed-Integer Linear Programming model in a 2-steps approach. Secondary substations are grouped in primary substation clusters, considering both normal and contingency operation. Topological and electrical constraints have to be fulfilled as well as a given level of reliability; the mathematical formulation includes feeder and substation constraints. The proposed methodology is expected to be only the first step of the whole network expansion planning. Hence, it has to be able to give macro information that planners can refine in the following steps of the planning process. A numerical case study on a real network illustrates the effectiveness of the proposed approach for the Distribution Network expansion planning problem.</description><subject>Contingency</subject><subject>Delaunay triangulation</subject><subject>Electricity distribution</subject><subject>Expansion</subject><subject>Expansion planning</subject><subject>Geographic information systems</subject><subject>Integer linear programming</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Methodology</subject><subject>Mixed integer</subject><subject>Network reliability</subject><subject>Optimization</subject><subject>Power system planning</subject><subject>Power system reliability</subject><subject>Substations</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOwzAQRC0EEqXwA5wscU5xnNhxJC5VBQUJiQNwthx707qkdrBToH_AZ-NQzpwsPc_s7gxClzmZ5STn15sZ9DHMKKEj4FyUR2iSi6rIKCn5MZqQohJZVdX8FJ3FuCGE8LpiE_Q9x8uH56xREQxWfR-80mvc-oDXdrXOOviADhsbh2Cb3WC9ww6GTx_eIoavXrk4or5Tzlm3wjZ9-7BVHVbOYO3dkCg4vce-h6B-_YlGayCM-gCdVY3t7LA_Ryet6iJc_L1T9Hp3-7K4zx6flg-L-WOmCyqGjLUkZ4RVKuVSUCpGqoYJrmugoqQNMzlnhJtG1UKTphS0zqEwbWFqVnFOy2KKrg5zU9T3HcRBbvwuuLRSUkaKktO6EElFDyodfIwBWtkHu1VhL3Mix8blRo6Ny7FxeWg8mW4OJkj3f1gIMmqb0oOxAfQgjbf_2X8AK1eMGQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Bosisio, A.</creator><creator>Berizzi, A.</creator><creator>Amaldi, E.</creator><creator>Bovo, C.</creator><creator>Morotti, A.</creator><creator>Greco, B.</creator><creator>Iannarelli, G.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2856-783X</orcidid><orcidid>https://orcid.org/0000-0003-2690-4668</orcidid><orcidid>https://orcid.org/0000-0002-6246-3495</orcidid></search><sort><creationdate>202101</creationdate><title>A GIS-based approach for high-level distribution networks expansion planning in normal and contingency operation considering reliability</title><author>Bosisio, A. ; Berizzi, A. ; Amaldi, E. ; Bovo, C. ; Morotti, A. ; Greco, B. ; Iannarelli, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-5f015057a204ae4a507b586c9e2842b5d16506dba98c0b48291e3df3d95766243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Contingency</topic><topic>Delaunay triangulation</topic><topic>Electricity distribution</topic><topic>Expansion</topic><topic>Expansion planning</topic><topic>Geographic information systems</topic><topic>Integer linear programming</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Methodology</topic><topic>Mixed integer</topic><topic>Network reliability</topic><topic>Optimization</topic><topic>Power system planning</topic><topic>Power system reliability</topic><topic>Substations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosisio, A.</creatorcontrib><creatorcontrib>Berizzi, A.</creatorcontrib><creatorcontrib>Amaldi, E.</creatorcontrib><creatorcontrib>Bovo, C.</creatorcontrib><creatorcontrib>Morotti, A.</creatorcontrib><creatorcontrib>Greco, B.</creatorcontrib><creatorcontrib>Iannarelli, G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosisio, A.</au><au>Berizzi, A.</au><au>Amaldi, E.</au><au>Bovo, C.</au><au>Morotti, A.</au><au>Greco, B.</au><au>Iannarelli, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A GIS-based approach for high-level distribution networks expansion planning in normal and contingency operation considering reliability</atitle><jtitle>Electric power systems research</jtitle><date>2021-01</date><risdate>2021</risdate><volume>190</volume><spage>106684</spage><pages>106684-</pages><artnum>106684</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•GIS-based Mixed-Integer Linear programming (MILP) approach for DNs expansion planning.•Grouping secondary substations in primary substation clusters to obtain a cost-efficient, reliable, DN both in normal and in single contingency operating conditions.•Savings in terms of network extension reduction while maintaining a high level of reliability.•Proposed approach validates with real data.
This paper presents a novel methodology for the Distribution Networks expansion planning based on Geographic Information Systems. The proposed methodology combines Delaunay Triangulation with a Mixed-Integer Linear Programming model in a 2-steps approach. Secondary substations are grouped in primary substation clusters, considering both normal and contingency operation. Topological and electrical constraints have to be fulfilled as well as a given level of reliability; the mathematical formulation includes feeder and substation constraints. The proposed methodology is expected to be only the first step of the whole network expansion planning. Hence, it has to be able to give macro information that planners can refine in the following steps of the planning process. A numerical case study on a real network illustrates the effectiveness of the proposed approach for the Distribution Network expansion planning problem.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2020.106684</doi><orcidid>https://orcid.org/0000-0002-2856-783X</orcidid><orcidid>https://orcid.org/0000-0003-2690-4668</orcidid><orcidid>https://orcid.org/0000-0002-6246-3495</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7796 |
ispartof | Electric power systems research, 2021-01, Vol.190, p.106684, Article 106684 |
issn | 0378-7796 1873-2046 |
language | eng |
recordid | cdi_proquest_journals_2503462938 |
source | Access via ScienceDirect (Elsevier) |
subjects | Contingency Delaunay triangulation Electricity distribution Expansion Expansion planning Geographic information systems Integer linear programming Integer programming Linear programming Methodology Mixed integer Network reliability Optimization Power system planning Power system reliability Substations |
title | A GIS-based approach for high-level distribution networks expansion planning in normal and contingency operation considering reliability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20GIS-based%20approach%20for%20high-level%20distribution%20networks%20expansion%20planning%20in%20normal%20and%20contingency%20operation%20considering%20reliability&rft.jtitle=Electric%20power%20systems%20research&rft.au=Bosisio,%20A.&rft.date=2021-01&rft.volume=190&rft.spage=106684&rft.pages=106684-&rft.artnum=106684&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2020.106684&rft_dat=%3Cproquest_cross%3E2503462938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503462938&rft_id=info:pmid/&rft_els_id=S0378779620304879&rfr_iscdi=true |