Semi-supervised collaborative filtering ensemble

Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2021-03, Vol.24 (2), p.657-673
Hauptverfasser: Wu, Jun, Sang, Xiankai, Cui, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 2
container_start_page 657
container_title World wide web (Bussum)
container_volume 24
creator Wu, Jun
Sang, Xiankai
Cui, Wei
description Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance by assembling three popular CF techniques in a co-training framework. Concretely, SSEF first initializes three weak predictors with labeled examples by three different CF algorithms independently. Two predictors generated by neighborhood methods are then merged, along with the remaining one generated by latent factor model, serve as two base recommenders, each of which labels the unlabeled examples for the other recommender during the co-training process. To exploit unlabeled data safely, the labeling confidence is estimated by validating the influence of the pseudo-labeled examples on the labeled ones. The final prediction is made by blending the outputs from the three predictors enhanced with unlabeled data. Extensive experiments on three public benchmarks demonstrate the effectiveness of the proposed SSEF by comparing to a number of state-of-the-art CF techniques, including semi-supervised, ensemble, and side-information based solutions.
doi_str_mv 10.1007/s11280-021-00866-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503197039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503197039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6807a6a1b156060e6ab6122e328ed7ad443c667d0ba8506dde1cc033da75f2a33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8LnqMzyXbSPcriFyx4UMFbSJupdOm2NWkX_PdmreDN07yH94N5hLhEuEYAcxMRVQ4SFEqAnEiaIzHDzGiJS9THSeucks7eT8VZjFsAIL3CmYAX3tUyjj2HfR3ZL8quaVzRBTfUe15UdTNwqNuPBbeRd0XD5-Kkck3ki987F2_3d6_rR7l5fnha325kqXE1SMrBOHJYYEZAwOQKQqVYq5y9cX651CWR8VC4PAPynrEsQWvvTFYpp_VcXE29feg-R46D3XZjaNOkVRmkDQN6lVxqcpWhizFwZftQ71z4sgj2QMZOZGwiY3_IWJNCegrF_vAah7_qf1LflOtlmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503197039</pqid></control><display><type>article</type><title>Semi-supervised collaborative filtering ensemble</title><source>Springer Nature - Complete Springer Journals</source><creator>Wu, Jun ; Sang, Xiankai ; Cui, Wei</creator><creatorcontrib>Wu, Jun ; Sang, Xiankai ; Cui, Wei</creatorcontrib><description>Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance by assembling three popular CF techniques in a co-training framework. Concretely, SSEF first initializes three weak predictors with labeled examples by three different CF algorithms independently. Two predictors generated by neighborhood methods are then merged, along with the remaining one generated by latent factor model, serve as two base recommenders, each of which labels the unlabeled examples for the other recommender during the co-training process. To exploit unlabeled data safely, the labeling confidence is estimated by validating the influence of the pseudo-labeled examples on the labeled ones. The final prediction is made by blending the outputs from the three predictors enhanced with unlabeled data. Extensive experiments on three public benchmarks demonstrate the effectiveness of the proposed SSEF by comparing to a number of state-of-the-art CF techniques, including semi-supervised, ensemble, and side-information based solutions.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-021-00866-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Collaboration ; Computer Science ; Database Management ; Filtration ; Information Systems Applications (incl.Internet) ; Labels ; Operating Systems ; Recommender systems ; Training</subject><ispartof>World wide web (Bussum), 2021-03, Vol.24 (2), p.657-673</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6807a6a1b156060e6ab6122e328ed7ad443c667d0ba8506dde1cc033da75f2a33</citedby><cites>FETCH-LOGICAL-c319t-6807a6a1b156060e6ab6122e328ed7ad443c667d0ba8506dde1cc033da75f2a33</cites><orcidid>0000-0001-5733-3621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-021-00866-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-021-00866-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Sang, Xiankai</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><title>Semi-supervised collaborative filtering ensemble</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance by assembling three popular CF techniques in a co-training framework. Concretely, SSEF first initializes three weak predictors with labeled examples by three different CF algorithms independently. Two predictors generated by neighborhood methods are then merged, along with the remaining one generated by latent factor model, serve as two base recommenders, each of which labels the unlabeled examples for the other recommender during the co-training process. To exploit unlabeled data safely, the labeling confidence is estimated by validating the influence of the pseudo-labeled examples on the labeled ones. The final prediction is made by blending the outputs from the three predictors enhanced with unlabeled data. Extensive experiments on three public benchmarks demonstrate the effectiveness of the proposed SSEF by comparing to a number of state-of-the-art CF techniques, including semi-supervised, ensemble, and side-information based solutions.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Filtration</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Labels</subject><subject>Operating Systems</subject><subject>Recommender systems</subject><subject>Training</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8LnqMzyXbSPcriFyx4UMFbSJupdOm2NWkX_PdmreDN07yH94N5hLhEuEYAcxMRVQ4SFEqAnEiaIzHDzGiJS9THSeucks7eT8VZjFsAIL3CmYAX3tUyjj2HfR3ZL8quaVzRBTfUe15UdTNwqNuPBbeRd0XD5-Kkck3ki987F2_3d6_rR7l5fnha325kqXE1SMrBOHJYYEZAwOQKQqVYq5y9cX651CWR8VC4PAPynrEsQWvvTFYpp_VcXE29feg-R46D3XZjaNOkVRmkDQN6lVxqcpWhizFwZftQ71z4sgj2QMZOZGwiY3_IWJNCegrF_vAah7_qf1LflOtlmw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wu, Jun</creator><creator>Sang, Xiankai</creator><creator>Cui, Wei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5733-3621</orcidid></search><sort><creationdate>20210301</creationdate><title>Semi-supervised collaborative filtering ensemble</title><author>Wu, Jun ; Sang, Xiankai ; Cui, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6807a6a1b156060e6ab6122e328ed7ad443c667d0ba8506dde1cc033da75f2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Filtration</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Labels</topic><topic>Operating Systems</topic><topic>Recommender systems</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Sang, Xiankai</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jun</au><au>Sang, Xiankai</au><au>Cui, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-supervised collaborative filtering ensemble</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>24</volume><issue>2</issue><spage>657</spage><epage>673</epage><pages>657-673</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance by assembling three popular CF techniques in a co-training framework. Concretely, SSEF first initializes three weak predictors with labeled examples by three different CF algorithms independently. Two predictors generated by neighborhood methods are then merged, along with the remaining one generated by latent factor model, serve as two base recommenders, each of which labels the unlabeled examples for the other recommender during the co-training process. To exploit unlabeled data safely, the labeling confidence is estimated by validating the influence of the pseudo-labeled examples on the labeled ones. The final prediction is made by blending the outputs from the three predictors enhanced with unlabeled data. Extensive experiments on three public benchmarks demonstrate the effectiveness of the proposed SSEF by comparing to a number of state-of-the-art CF techniques, including semi-supervised, ensemble, and side-information based solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-021-00866-7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5733-3621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2021-03, Vol.24 (2), p.657-673
issn 1386-145X
1573-1413
language eng
recordid cdi_proquest_journals_2503197039
source Springer Nature - Complete Springer Journals
subjects Algorithms
Collaboration
Computer Science
Database Management
Filtration
Information Systems Applications (incl.Internet)
Labels
Operating Systems
Recommender systems
Training
title Semi-supervised collaborative filtering ensemble
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-supervised%20collaborative%20filtering%20ensemble&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Wu,%20Jun&rft.date=2021-03-01&rft.volume=24&rft.issue=2&rft.spage=657&rft.epage=673&rft.pages=657-673&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-021-00866-7&rft_dat=%3Cproquest_cross%3E2503197039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503197039&rft_id=info:pmid/&rfr_iscdi=true