Semi-supervised collaborative filtering ensemble
Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance b...
Gespeichert in:
Veröffentlicht in: | World wide web (Bussum) 2021-03, Vol.24 (2), p.657-673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 673 |
---|---|
container_issue | 2 |
container_start_page | 657 |
container_title | World wide web (Bussum) |
container_volume | 24 |
creator | Wu, Jun Sang, Xiankai Cui, Wei |
description | Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance by assembling three popular CF techniques in a co-training framework. Concretely, SSEF first initializes three weak predictors with labeled examples by three different CF algorithms independently. Two predictors generated by neighborhood methods are then merged, along with the remaining one generated by latent factor model, serve as two base recommenders, each of which labels the unlabeled examples for the other recommender during the co-training process. To exploit unlabeled data safely, the labeling confidence is estimated by validating the influence of the pseudo-labeled examples on the labeled ones. The final prediction is made by blending the outputs from the three predictors enhanced with unlabeled data. Extensive experiments on three public benchmarks demonstrate the effectiveness of the proposed SSEF by comparing to a number of state-of-the-art CF techniques, including semi-supervised, ensemble, and side-information based solutions. |
doi_str_mv | 10.1007/s11280-021-00866-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503197039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503197039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6807a6a1b156060e6ab6122e328ed7ad443c667d0ba8506dde1cc033da75f2a33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8LnqMzyXbSPcriFyx4UMFbSJupdOm2NWkX_PdmreDN07yH94N5hLhEuEYAcxMRVQ4SFEqAnEiaIzHDzGiJS9THSeucks7eT8VZjFsAIL3CmYAX3tUyjj2HfR3ZL8quaVzRBTfUe15UdTNwqNuPBbeRd0XD5-Kkck3ki987F2_3d6_rR7l5fnha325kqXE1SMrBOHJYYEZAwOQKQqVYq5y9cX651CWR8VC4PAPynrEsQWvvTFYpp_VcXE29feg-R46D3XZjaNOkVRmkDQN6lVxqcpWhizFwZftQ71z4sgj2QMZOZGwiY3_IWJNCegrF_vAah7_qf1LflOtlmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503197039</pqid></control><display><type>article</type><title>Semi-supervised collaborative filtering ensemble</title><source>Springer Nature - Complete Springer Journals</source><creator>Wu, Jun ; Sang, Xiankai ; Cui, Wei</creator><creatorcontrib>Wu, Jun ; Sang, Xiankai ; Cui, Wei</creatorcontrib><description>Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance by assembling three popular CF techniques in a co-training framework. Concretely, SSEF first initializes three weak predictors with labeled examples by three different CF algorithms independently. Two predictors generated by neighborhood methods are then merged, along with the remaining one generated by latent factor model, serve as two base recommenders, each of which labels the unlabeled examples for the other recommender during the co-training process. To exploit unlabeled data safely, the labeling confidence is estimated by validating the influence of the pseudo-labeled examples on the labeled ones. The final prediction is made by blending the outputs from the three predictors enhanced with unlabeled data. Extensive experiments on three public benchmarks demonstrate the effectiveness of the proposed SSEF by comparing to a number of state-of-the-art CF techniques, including semi-supervised, ensemble, and side-information based solutions.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-021-00866-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Collaboration ; Computer Science ; Database Management ; Filtration ; Information Systems Applications (incl.Internet) ; Labels ; Operating Systems ; Recommender systems ; Training</subject><ispartof>World wide web (Bussum), 2021-03, Vol.24 (2), p.657-673</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6807a6a1b156060e6ab6122e328ed7ad443c667d0ba8506dde1cc033da75f2a33</citedby><cites>FETCH-LOGICAL-c319t-6807a6a1b156060e6ab6122e328ed7ad443c667d0ba8506dde1cc033da75f2a33</cites><orcidid>0000-0001-5733-3621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-021-00866-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-021-00866-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Sang, Xiankai</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><title>Semi-supervised collaborative filtering ensemble</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance by assembling three popular CF techniques in a co-training framework. Concretely, SSEF first initializes three weak predictors with labeled examples by three different CF algorithms independently. Two predictors generated by neighborhood methods are then merged, along with the remaining one generated by latent factor model, serve as two base recommenders, each of which labels the unlabeled examples for the other recommender during the co-training process. To exploit unlabeled data safely, the labeling confidence is estimated by validating the influence of the pseudo-labeled examples on the labeled ones. The final prediction is made by blending the outputs from the three predictors enhanced with unlabeled data. Extensive experiments on three public benchmarks demonstrate the effectiveness of the proposed SSEF by comparing to a number of state-of-the-art CF techniques, including semi-supervised, ensemble, and side-information based solutions.</description><subject>Algorithms</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Filtration</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Labels</subject><subject>Operating Systems</subject><subject>Recommender systems</subject><subject>Training</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8LnqMzyXbSPcriFyx4UMFbSJupdOm2NWkX_PdmreDN07yH94N5hLhEuEYAcxMRVQ4SFEqAnEiaIzHDzGiJS9THSeucks7eT8VZjFsAIL3CmYAX3tUyjj2HfR3ZL8quaVzRBTfUe15UdTNwqNuPBbeRd0XD5-Kkck3ki987F2_3d6_rR7l5fnha325kqXE1SMrBOHJYYEZAwOQKQqVYq5y9cX651CWR8VC4PAPynrEsQWvvTFYpp_VcXE29feg-R46D3XZjaNOkVRmkDQN6lVxqcpWhizFwZftQ71z4sgj2QMZOZGwiY3_IWJNCegrF_vAah7_qf1LflOtlmw</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wu, Jun</creator><creator>Sang, Xiankai</creator><creator>Cui, Wei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5733-3621</orcidid></search><sort><creationdate>20210301</creationdate><title>Semi-supervised collaborative filtering ensemble</title><author>Wu, Jun ; Sang, Xiankai ; Cui, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6807a6a1b156060e6ab6122e328ed7ad443c667d0ba8506dde1cc033da75f2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Filtration</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Labels</topic><topic>Operating Systems</topic><topic>Recommender systems</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jun</creatorcontrib><creatorcontrib>Sang, Xiankai</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jun</au><au>Sang, Xiankai</au><au>Cui, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-supervised collaborative filtering ensemble</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>24</volume><issue>2</issue><spage>657</spage><epage>673</epage><pages>657-673</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Collaborative filtering (CF) plays a central role in recommender systems, but often suffers from the data sparsity issue that dramatically degrades the recommendation performance. In this paper, we propose a Semi-Supervised Ensemble Filtering (SSEF) method to improve the recommendation performance by assembling three popular CF techniques in a co-training framework. Concretely, SSEF first initializes three weak predictors with labeled examples by three different CF algorithms independently. Two predictors generated by neighborhood methods are then merged, along with the remaining one generated by latent factor model, serve as two base recommenders, each of which labels the unlabeled examples for the other recommender during the co-training process. To exploit unlabeled data safely, the labeling confidence is estimated by validating the influence of the pseudo-labeled examples on the labeled ones. The final prediction is made by blending the outputs from the three predictors enhanced with unlabeled data. Extensive experiments on three public benchmarks demonstrate the effectiveness of the proposed SSEF by comparing to a number of state-of-the-art CF techniques, including semi-supervised, ensemble, and side-information based solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-021-00866-7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5733-3621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-145X |
ispartof | World wide web (Bussum), 2021-03, Vol.24 (2), p.657-673 |
issn | 1386-145X 1573-1413 |
language | eng |
recordid | cdi_proquest_journals_2503197039 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Collaboration Computer Science Database Management Filtration Information Systems Applications (incl.Internet) Labels Operating Systems Recommender systems Training |
title | Semi-supervised collaborative filtering ensemble |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-supervised%20collaborative%20filtering%20ensemble&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Wu,%20Jun&rft.date=2021-03-01&rft.volume=24&rft.issue=2&rft.spage=657&rft.epage=673&rft.pages=657-673&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-021-00866-7&rft_dat=%3Cproquest_cross%3E2503197039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503197039&rft_id=info:pmid/&rfr_iscdi=true |