Application of Gaussian Q-Function Approximations in Fluctuating Beckmann Fading Model
This letter is an application of various exponential-based approximations to Gaussian Q -function, which are used to derive a generalized closed-form solution for the symbol error probability (SEP) over recently introduced Fluctuating Beckmann fading model. This model covers all the other important...
Gespeichert in:
Veröffentlicht in: | National Academy science letters 2021-04, Vol.44 (2), p.125-131 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | National Academy science letters |
container_volume | 44 |
creator | Aggarwal, Supriya |
description | This letter is an application of various exponential-based approximations to Gaussian
Q
-function, which are used to derive a generalized closed-form solution for the symbol error probability (SEP) over recently introduced Fluctuating Beckmann fading model. This model covers all the other important fadings like Gaussian, Rayleigh, Rician, Nakagami-
m
,
η
-
μ
,
κ
-
μ
, shadowed Rician and
κ
-
μ
distributions as special cases. The SEP expression is mathematically effortless and requires elementary power function computations only. |
doi_str_mv | 10.1007/s40009-020-00965-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503173409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503173409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bac7c4307afdc4dc4dcdc42ce120cb65ca6187563c0dd6d76312157bd07297853</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOOb-gFcFr6MnSZOsl3O4KUxEUPEuZEk6Ort0Ji3ovzdtBe-EkPPBc97kvAhdErgmAPIm5gBQYKCAUxQc8xM0oZQDJpLnp2gCfc5z8n6OZjHuEw1ccE7oBL0tjse6MrqtGp81ZbbWXYyV9tkzXnXeDO2EhOarOgxQzCqfrerOtF2q_S67debjoH1qatvXj4119QU6K3Ud3ew3TtHr6u5leY83T-uH5WKDDSNFi7faSJMzkLq0Jh9OuqhxhILZCm60IHPJBTNgrbBSMEIJl1sLkhZyztkUXY266YefnYut2jdd8OlJlXZmRLIcikTRkTKhiTG4Uh1DWid8KwKqt1CNFqpkoRosVL00G4digv3OhT_pf6Z-AGJac9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173409</pqid></control><display><type>article</type><title>Application of Gaussian Q-Function Approximations in Fluctuating Beckmann Fading Model</title><source>SpringerLink Journals</source><creator>Aggarwal, Supriya</creator><creatorcontrib>Aggarwal, Supriya</creatorcontrib><description>This letter is an application of various exponential-based approximations to Gaussian
Q
-function, which are used to derive a generalized closed-form solution for the symbol error probability (SEP) over recently introduced Fluctuating Beckmann fading model. This model covers all the other important fadings like Gaussian, Rayleigh, Rician, Nakagami-
m
,
η
-
μ
,
κ
-
μ
, shadowed Rician and
κ
-
μ
distributions as special cases. The SEP expression is mathematically effortless and requires elementary power function computations only.</description><identifier>ISSN: 0250-541X</identifier><identifier>EISSN: 2250-1754</identifier><identifier>DOI: 10.1007/s40009-020-00965-5</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Approximation ; Fading ; History of Science ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Short Communication</subject><ispartof>National Academy science letters, 2021-04, Vol.44 (2), p.125-131</ispartof><rights>The National Academy of Sciences, India 2020</rights><rights>The National Academy of Sciences, India 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bac7c4307afdc4dc4dcdc42ce120cb65ca6187563c0dd6d76312157bd07297853</citedby><cites>FETCH-LOGICAL-c319t-bac7c4307afdc4dc4dcdc42ce120cb65ca6187563c0dd6d76312157bd07297853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40009-020-00965-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40009-020-00965-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aggarwal, Supriya</creatorcontrib><title>Application of Gaussian Q-Function Approximations in Fluctuating Beckmann Fading Model</title><title>National Academy science letters</title><addtitle>Natl. Acad. Sci. Lett</addtitle><description>This letter is an application of various exponential-based approximations to Gaussian
Q
-function, which are used to derive a generalized closed-form solution for the symbol error probability (SEP) over recently introduced Fluctuating Beckmann fading model. This model covers all the other important fadings like Gaussian, Rayleigh, Rician, Nakagami-
m
,
η
-
μ
,
κ
-
μ
, shadowed Rician and
κ
-
μ
distributions as special cases. The SEP expression is mathematically effortless and requires elementary power function computations only.</description><subject>Approximation</subject><subject>Fading</subject><subject>History of Science</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Short Communication</subject><issn>0250-541X</issn><issn>2250-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOOb-gFcFr6MnSZOsl3O4KUxEUPEuZEk6Ort0Ji3ovzdtBe-EkPPBc97kvAhdErgmAPIm5gBQYKCAUxQc8xM0oZQDJpLnp2gCfc5z8n6OZjHuEw1ccE7oBL0tjse6MrqtGp81ZbbWXYyV9tkzXnXeDO2EhOarOgxQzCqfrerOtF2q_S67debjoH1qatvXj4119QU6K3Ud3ew3TtHr6u5leY83T-uH5WKDDSNFi7faSJMzkLq0Jh9OuqhxhILZCm60IHPJBTNgrbBSMEIJl1sLkhZyztkUXY266YefnYut2jdd8OlJlXZmRLIcikTRkTKhiTG4Uh1DWid8KwKqt1CNFqpkoRosVL00G4digv3OhT_pf6Z-AGJac9Q</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Aggarwal, Supriya</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Application of Gaussian Q-Function Approximations in Fluctuating Beckmann Fading Model</title><author>Aggarwal, Supriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bac7c4307afdc4dc4dcdc42ce120cb65ca6187563c0dd6d76312157bd07297853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Fading</topic><topic>History of Science</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Short Communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, Supriya</creatorcontrib><collection>CrossRef</collection><jtitle>National Academy science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, Supriya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Gaussian Q-Function Approximations in Fluctuating Beckmann Fading Model</atitle><jtitle>National Academy science letters</jtitle><stitle>Natl. Acad. Sci. Lett</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>44</volume><issue>2</issue><spage>125</spage><epage>131</epage><pages>125-131</pages><issn>0250-541X</issn><eissn>2250-1754</eissn><abstract>This letter is an application of various exponential-based approximations to Gaussian
Q
-function, which are used to derive a generalized closed-form solution for the symbol error probability (SEP) over recently introduced Fluctuating Beckmann fading model. This model covers all the other important fadings like Gaussian, Rayleigh, Rician, Nakagami-
m
,
η
-
μ
,
κ
-
μ
, shadowed Rician and
κ
-
μ
distributions as special cases. The SEP expression is mathematically effortless and requires elementary power function computations only.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s40009-020-00965-5</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-541X |
ispartof | National Academy science letters, 2021-04, Vol.44 (2), p.125-131 |
issn | 0250-541X 2250-1754 |
language | eng |
recordid | cdi_proquest_journals_2503173409 |
source | SpringerLink Journals |
subjects | Approximation Fading History of Science Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) Short Communication |
title | Application of Gaussian Q-Function Approximations in Fluctuating Beckmann Fading Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Gaussian%20Q-Function%20Approximations%20in%20Fluctuating%20Beckmann%20Fading%20Model&rft.jtitle=National%20Academy%20science%20letters&rft.au=Aggarwal,%20Supriya&rft.date=2021-04-01&rft.volume=44&rft.issue=2&rft.spage=125&rft.epage=131&rft.pages=125-131&rft.issn=0250-541X&rft.eissn=2250-1754&rft_id=info:doi/10.1007/s40009-020-00965-5&rft_dat=%3Cproquest_cross%3E2503173409%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503173409&rft_id=info:pmid/&rfr_iscdi=true |