Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries

SiO 2 -based anodes for lithium ion batteries (LIBs) suffer from low conductivity and volume change in charge/discharge processes. It is reported that reasonable amorphous and nanometric characteristics can effectively improve the activity of SiO 2 for Li + storage. So, highly active SiO 2 @C nanofi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2021-04, Vol.27 (4), p.1385-1392
Hauptverfasser: Chen, Zhi, Xiang, Tong, Xiong, Qingming, Chen, Li, Yang, Huiyong, Feng, Zhijun, Li, Xibao, Shen, Xing, Huang, Juntong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1392
container_issue 4
container_start_page 1385
container_title Ionics
container_volume 27
creator Chen, Zhi
Xiang, Tong
Xiong, Qingming
Chen, Li
Yang, Huiyong
Feng, Zhijun
Li, Xibao
Shen, Xing
Huang, Juntong
description SiO 2 -based anodes for lithium ion batteries (LIBs) suffer from low conductivity and volume change in charge/discharge processes. It is reported that reasonable amorphous and nanometric characteristics can effectively improve the activity of SiO 2 for Li + storage. So, highly active SiO 2 @C nanofibers were prepared by electrospinning. Using X-ray diffraction (XRD), its amorphous characteristics were revealed. The results from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that it was a nanofiber structure. As an anode for LIBs, the SiO 2 @C nanofibrous electrode showed the discharge capacities of 675 and 188 mAh g −1 at 1 A g −1 (1000the cycle) and 10 A g −1 (5000th cycle), respectively. Even at 50 A g −1 , it still maintained 88 mA h g −1 at 60,000 cycles, showing excellent stability and high rate.
doi_str_mv 10.1007/s11581-021-03935-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503173324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503173324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4e3fd2063c0af8998ee8516b0e23f4d38a6febceb87a12ed05cfa2f86fcb2ac83</originalsourceid><addsrcrecordid>eNp9kE9LwzAYxoMoOKdfwFPAc_VN0japJ2WoEwY7OM8hTd9sGV07k07YPr3RCd48vDyH9_kDP0KuGdwyAHkXGSsUy4CnE5UossMJGTFV8gxkCadkBFUuMwm5PCcXMa4BypJxOSKLqV-u2j01dvCfSN_8nD9MaGe63vkawz1dpT8NZkBquoa2fbekdm9bn9T1gbZ-WPndhvq-o7UZBgwe4yU5c6aNePWrY_L-_LSYTLPZ_OV18jjLrGDVkOUoXMOhFBaMU1WlEFXByhqQC5c3QpnSYW2xVtIwjg0U1hnuVOlszY1VYkxujr3b0H_sMA563e9ClyY1L0AwKQTPk4sfXTb0MQZ0ehv8xoS9ZqC_6ekjPZ3o6R96-pBC4hiKydwtMfxV_5P6AkBhc4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173324</pqid></control><display><type>article</type><title>Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Zhi ; Xiang, Tong ; Xiong, Qingming ; Chen, Li ; Yang, Huiyong ; Feng, Zhijun ; Li, Xibao ; Shen, Xing ; Huang, Juntong</creator><creatorcontrib>Chen, Zhi ; Xiang, Tong ; Xiong, Qingming ; Chen, Li ; Yang, Huiyong ; Feng, Zhijun ; Li, Xibao ; Shen, Xing ; Huang, Juntong</creatorcontrib><description>SiO 2 -based anodes for lithium ion batteries (LIBs) suffer from low conductivity and volume change in charge/discharge processes. It is reported that reasonable amorphous and nanometric characteristics can effectively improve the activity of SiO 2 for Li + storage. So, highly active SiO 2 @C nanofibers were prepared by electrospinning. Using X-ray diffraction (XRD), its amorphous characteristics were revealed. The results from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that it was a nanofiber structure. As an anode for LIBs, the SiO 2 @C nanofibrous electrode showed the discharge capacities of 675 and 188 mAh g −1 at 1 A g −1 (1000the cycle) and 10 A g −1 (5000th cycle), respectively. Even at 50 A g −1 , it still maintained 88 mA h g −1 at 60,000 cycles, showing excellent stability and high rate.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-03935-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anodes ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Discharge ; Electrochemistry ; Electron microscopes ; Electron microscopy ; Energy Storage ; Lithium ; Lithium-ion batteries ; Low conductivity ; Microscopy ; Nanofibers ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Silicon dioxide</subject><ispartof>Ionics, 2021-04, Vol.27 (4), p.1385-1392</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4e3fd2063c0af8998ee8516b0e23f4d38a6febceb87a12ed05cfa2f86fcb2ac83</citedby><cites>FETCH-LOGICAL-c319t-4e3fd2063c0af8998ee8516b0e23f4d38a6febceb87a12ed05cfa2f86fcb2ac83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-021-03935-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-021-03935-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Xiang, Tong</creatorcontrib><creatorcontrib>Xiong, Qingming</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Yang, Huiyong</creatorcontrib><creatorcontrib>Feng, Zhijun</creatorcontrib><creatorcontrib>Li, Xibao</creatorcontrib><creatorcontrib>Shen, Xing</creatorcontrib><creatorcontrib>Huang, Juntong</creatorcontrib><title>Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>SiO 2 -based anodes for lithium ion batteries (LIBs) suffer from low conductivity and volume change in charge/discharge processes. It is reported that reasonable amorphous and nanometric characteristics can effectively improve the activity of SiO 2 for Li + storage. So, highly active SiO 2 @C nanofibers were prepared by electrospinning. Using X-ray diffraction (XRD), its amorphous characteristics were revealed. The results from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that it was a nanofiber structure. As an anode for LIBs, the SiO 2 @C nanofibrous electrode showed the discharge capacities of 675 and 188 mAh g −1 at 1 A g −1 (1000the cycle) and 10 A g −1 (5000th cycle), respectively. Even at 50 A g −1 , it still maintained 88 mA h g −1 at 60,000 cycles, showing excellent stability and high rate.</description><subject>Anodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Discharge</subject><subject>Electrochemistry</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Energy Storage</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Low conductivity</subject><subject>Microscopy</subject><subject>Nanofibers</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Silicon dioxide</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAYxoMoOKdfwFPAc_VN0japJ2WoEwY7OM8hTd9sGV07k07YPr3RCd48vDyH9_kDP0KuGdwyAHkXGSsUy4CnE5UossMJGTFV8gxkCadkBFUuMwm5PCcXMa4BypJxOSKLqV-u2j01dvCfSN_8nD9MaGe63vkawz1dpT8NZkBquoa2fbekdm9bn9T1gbZ-WPndhvq-o7UZBgwe4yU5c6aNePWrY_L-_LSYTLPZ_OV18jjLrGDVkOUoXMOhFBaMU1WlEFXByhqQC5c3QpnSYW2xVtIwjg0U1hnuVOlszY1VYkxujr3b0H_sMA563e9ClyY1L0AwKQTPk4sfXTb0MQZ0ehv8xoS9ZqC_6ekjPZ3o6R96-pBC4hiKydwtMfxV_5P6AkBhc4E</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Chen, Zhi</creator><creator>Xiang, Tong</creator><creator>Xiong, Qingming</creator><creator>Chen, Li</creator><creator>Yang, Huiyong</creator><creator>Feng, Zhijun</creator><creator>Li, Xibao</creator><creator>Shen, Xing</creator><creator>Huang, Juntong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries</title><author>Chen, Zhi ; Xiang, Tong ; Xiong, Qingming ; Chen, Li ; Yang, Huiyong ; Feng, Zhijun ; Li, Xibao ; Shen, Xing ; Huang, Juntong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4e3fd2063c0af8998ee8516b0e23f4d38a6febceb87a12ed05cfa2f86fcb2ac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Discharge</topic><topic>Electrochemistry</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Energy Storage</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Low conductivity</topic><topic>Microscopy</topic><topic>Nanofibers</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhi</creatorcontrib><creatorcontrib>Xiang, Tong</creatorcontrib><creatorcontrib>Xiong, Qingming</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Yang, Huiyong</creatorcontrib><creatorcontrib>Feng, Zhijun</creatorcontrib><creatorcontrib>Li, Xibao</creatorcontrib><creatorcontrib>Shen, Xing</creatorcontrib><creatorcontrib>Huang, Juntong</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhi</au><au>Xiang, Tong</au><au>Xiong, Qingming</au><au>Chen, Li</au><au>Yang, Huiyong</au><au>Feng, Zhijun</au><au>Li, Xibao</au><au>Shen, Xing</au><au>Huang, Juntong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>1385</spage><epage>1392</epage><pages>1385-1392</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>SiO 2 -based anodes for lithium ion batteries (LIBs) suffer from low conductivity and volume change in charge/discharge processes. It is reported that reasonable amorphous and nanometric characteristics can effectively improve the activity of SiO 2 for Li + storage. So, highly active SiO 2 @C nanofibers were prepared by electrospinning. Using X-ray diffraction (XRD), its amorphous characteristics were revealed. The results from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that it was a nanofiber structure. As an anode for LIBs, the SiO 2 @C nanofibrous electrode showed the discharge capacities of 675 and 188 mAh g −1 at 1 A g −1 (1000the cycle) and 10 A g −1 (5000th cycle), respectively. Even at 50 A g −1 , it still maintained 88 mA h g −1 at 60,000 cycles, showing excellent stability and high rate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-03935-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2021-04, Vol.27 (4), p.1385-1392
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2503173324
source SpringerLink Journals - AutoHoldings
subjects Anodes
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Discharge
Electrochemistry
Electron microscopes
Electron microscopy
Energy Storage
Lithium
Lithium-ion batteries
Low conductivity
Microscopy
Nanofibers
Optical and Electronic Materials
Original Paper
Rechargeable batteries
Renewable and Green Energy
Silicon dioxide
title Highly active SiO2@C nanofiber: high rate and long cycling for lithium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20active%20SiO2@C%20nanofiber:%20high%20rate%20and%20long%20cycling%20for%20lithium%20ion%20batteries&rft.jtitle=Ionics&rft.au=Chen,%20Zhi&rft.date=2021-04-01&rft.volume=27&rft.issue=4&rft.spage=1385&rft.epage=1392&rft.pages=1385-1392&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-03935-z&rft_dat=%3Cproquest_cross%3E2503173324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503173324&rft_id=info:pmid/&rfr_iscdi=true