Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage

Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2021-04, Vol.27 (4), p.1429-1437
Hauptverfasser: Yang, H., Yang, L. Y., Abliz, A., Wang, S. Y., Zhao, F. J., Zhang, M., Li, J., Li, H. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1437
container_issue 4
container_start_page 1429
container_title Ionics
container_volume 27
creator Yang, H.
Yang, L. Y.
Abliz, A.
Wang, S. Y.
Zhao, F. J.
Zhang, M.
Li, J.
Li, H. B.
description Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g −1 (at a rate of 0.1 A g −1 ) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g −1 in sodium-ion battery. Graphical abstract Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs.
doi_str_mv 10.1007/s11581-021-03924-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503173213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503173213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-42b59f7f757afa4892dd1318724dec47197238fb56f7876a969d20bccb67206c3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA62h-2txmqYOjA4ILdeMmpEk6dphpatIKvr2ZqeDOxSWX8J3vwkHoktFrRincJMbKihHK8wjFC8KP0IxVkhMKkh6jGVUFEKAFnKKzlDaUSsk4zJC9a7HpHH7pcG_i0NqtT9jvau-cd7jt8PtqSSrifGy_8kcfYhgTtibWocMmZTY4j5sQ8bYdPtpxd2hLwe3XNIRo1v4cnTRmm_zF7ztHb8v718UjeXp-WC1un4gVTA2k4HWpGmigBNOYolLcOSZYBbxw3hbAFHBRNXUpG6hAGiWV47S2tpbAqbRijq6m3j6Gz9GnQW_CGLt8UvOSCgaCM5FTfErZGFKKvtF9bHcmfmtG9V6mnmTqLFMfZGqeITFBKYe7tY9_1f9QP0BTdhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173213</pqid></control><display><type>article</type><title>Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage</title><source>SpringerLink Journals</source><creator>Yang, H. ; Yang, L. Y. ; Abliz, A. ; Wang, S. Y. ; Zhao, F. J. ; Zhang, M. ; Li, J. ; Li, H. B.</creator><creatorcontrib>Yang, H. ; Yang, L. Y. ; Abliz, A. ; Wang, S. Y. ; Zhao, F. J. ; Zhang, M. ; Li, J. ; Li, H. B.</creatorcontrib><description>Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g −1 (at a rate of 0.1 A g −1 ) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g −1 in sodium-ion battery. Graphical abstract Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-03924-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anodes ; Bismuth ; Carbon ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Energy Storage ; Ion storage ; Lithium ions ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Sodium-ion batteries ; Three dimensional composites</subject><ispartof>Ionics, 2021-04, Vol.27 (4), p.1429-1437</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-42b59f7f757afa4892dd1318724dec47197238fb56f7876a969d20bccb67206c3</citedby><cites>FETCH-LOGICAL-c319t-42b59f7f757afa4892dd1318724dec47197238fb56f7876a969d20bccb67206c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-021-03924-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-021-03924-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, H.</creatorcontrib><creatorcontrib>Yang, L. Y.</creatorcontrib><creatorcontrib>Abliz, A.</creatorcontrib><creatorcontrib>Wang, S. Y.</creatorcontrib><creatorcontrib>Zhao, F. J.</creatorcontrib><creatorcontrib>Zhang, M.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Li, H. B.</creatorcontrib><title>Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g −1 (at a rate of 0.1 A g −1 ) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g −1 in sodium-ion battery. Graphical abstract Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs.</description><subject>Anodes</subject><subject>Bismuth</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Ion storage</subject><subject>Lithium ions</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Sodium-ion batteries</subject><subject>Three dimensional composites</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gKuA62h-2txmqYOjA4ILdeMmpEk6dphpatIKvr2ZqeDOxSWX8J3vwkHoktFrRincJMbKihHK8wjFC8KP0IxVkhMKkh6jGVUFEKAFnKKzlDaUSsk4zJC9a7HpHH7pcG_i0NqtT9jvau-cd7jt8PtqSSrifGy_8kcfYhgTtibWocMmZTY4j5sQ8bYdPtpxd2hLwe3XNIRo1v4cnTRmm_zF7ztHb8v718UjeXp-WC1un4gVTA2k4HWpGmigBNOYolLcOSZYBbxw3hbAFHBRNXUpG6hAGiWV47S2tpbAqbRijq6m3j6Gz9GnQW_CGLt8UvOSCgaCM5FTfErZGFKKvtF9bHcmfmtG9V6mnmTqLFMfZGqeITFBKYe7tY9_1f9QP0BTdhU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yang, H.</creator><creator>Yang, L. Y.</creator><creator>Abliz, A.</creator><creator>Wang, S. Y.</creator><creator>Zhao, F. J.</creator><creator>Zhang, M.</creator><creator>Li, J.</creator><creator>Li, H. B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage</title><author>Yang, H. ; Yang, L. Y. ; Abliz, A. ; Wang, S. Y. ; Zhao, F. J. ; Zhang, M. ; Li, J. ; Li, H. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-42b59f7f757afa4892dd1318724dec47197238fb56f7876a969d20bccb67206c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Bismuth</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Ion storage</topic><topic>Lithium ions</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Sodium-ion batteries</topic><topic>Three dimensional composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, H.</creatorcontrib><creatorcontrib>Yang, L. Y.</creatorcontrib><creatorcontrib>Abliz, A.</creatorcontrib><creatorcontrib>Wang, S. Y.</creatorcontrib><creatorcontrib>Zhao, F. J.</creatorcontrib><creatorcontrib>Zhang, M.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Li, H. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, H.</au><au>Yang, L. Y.</au><au>Abliz, A.</au><au>Wang, S. Y.</au><au>Zhao, F. J.</au><au>Zhang, M.</au><au>Li, J.</au><au>Li, H. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>1429</spage><epage>1437</epage><pages>1429-1437</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g −1 (at a rate of 0.1 A g −1 ) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g −1 in sodium-ion battery. Graphical abstract Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-03924-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2021-04, Vol.27 (4), p.1429-1437
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2503173213
source SpringerLink Journals
subjects Anodes
Bismuth
Carbon
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Energy Storage
Ion storage
Lithium ions
Optical and Electronic Materials
Original Paper
Rechargeable batteries
Renewable and Green Energy
Sodium-ion batteries
Three dimensional composites
title Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi%20and%20Sn%20particles%20embedded%20in%20ZIF-8-derived%20porous%20carbon%20as%20anode%20for%20lithium%20and%20sodium%20storage&rft.jtitle=Ionics&rft.au=Yang,%20H.&rft.date=2021-04-01&rft.volume=27&rft.issue=4&rft.spage=1429&rft.epage=1437&rft.pages=1429-1437&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-03924-2&rft_dat=%3Cproquest_cross%3E2503173213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503173213&rft_id=info:pmid/&rfr_iscdi=true