Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage
Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reductio...
Gespeichert in:
Veröffentlicht in: | Ionics 2021-04, Vol.27 (4), p.1429-1437 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1437 |
---|---|
container_issue | 4 |
container_start_page | 1429 |
container_title | Ionics |
container_volume | 27 |
creator | Yang, H. Yang, L. Y. Abliz, A. Wang, S. Y. Zhao, F. J. Zhang, M. Li, J. Li, H. B. |
description | Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g
−1
(at a rate of 0.1 A g
−1
) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g
−1
in sodium-ion battery.
Graphical abstract
Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs. |
doi_str_mv | 10.1007/s11581-021-03924-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503173213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503173213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-42b59f7f757afa4892dd1318724dec47197238fb56f7876a969d20bccb67206c3</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuA62h-2txmqYOjA4ILdeMmpEk6dphpatIKvr2ZqeDOxSWX8J3vwkHoktFrRincJMbKihHK8wjFC8KP0IxVkhMKkh6jGVUFEKAFnKKzlDaUSsk4zJC9a7HpHH7pcG_i0NqtT9jvau-cd7jt8PtqSSrifGy_8kcfYhgTtibWocMmZTY4j5sQ8bYdPtpxd2hLwe3XNIRo1v4cnTRmm_zF7ztHb8v718UjeXp-WC1un4gVTA2k4HWpGmigBNOYolLcOSZYBbxw3hbAFHBRNXUpG6hAGiWV47S2tpbAqbRijq6m3j6Gz9GnQW_CGLt8UvOSCgaCM5FTfErZGFKKvtF9bHcmfmtG9V6mnmTqLFMfZGqeITFBKYe7tY9_1f9QP0BTdhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173213</pqid></control><display><type>article</type><title>Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage</title><source>SpringerLink Journals</source><creator>Yang, H. ; Yang, L. Y. ; Abliz, A. ; Wang, S. Y. ; Zhao, F. J. ; Zhang, M. ; Li, J. ; Li, H. B.</creator><creatorcontrib>Yang, H. ; Yang, L. Y. ; Abliz, A. ; Wang, S. Y. ; Zhao, F. J. ; Zhang, M. ; Li, J. ; Li, H. B.</creatorcontrib><description>Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g
−1
(at a rate of 0.1 A g
−1
) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g
−1
in sodium-ion battery.
Graphical abstract
Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-021-03924-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anodes ; Bismuth ; Carbon ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Energy Storage ; Ion storage ; Lithium ions ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Sodium-ion batteries ; Three dimensional composites</subject><ispartof>Ionics, 2021-04, Vol.27 (4), p.1429-1437</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-42b59f7f757afa4892dd1318724dec47197238fb56f7876a969d20bccb67206c3</citedby><cites>FETCH-LOGICAL-c319t-42b59f7f757afa4892dd1318724dec47197238fb56f7876a969d20bccb67206c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-021-03924-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-021-03924-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yang, H.</creatorcontrib><creatorcontrib>Yang, L. Y.</creatorcontrib><creatorcontrib>Abliz, A.</creatorcontrib><creatorcontrib>Wang, S. Y.</creatorcontrib><creatorcontrib>Zhao, F. J.</creatorcontrib><creatorcontrib>Zhang, M.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Li, H. B.</creatorcontrib><title>Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g
−1
(at a rate of 0.1 A g
−1
) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g
−1
in sodium-ion battery.
Graphical abstract
Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs.</description><subject>Anodes</subject><subject>Bismuth</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Ion storage</subject><subject>Lithium ions</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Sodium-ion batteries</subject><subject>Three dimensional composites</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gKuA62h-2txmqYOjA4ILdeMmpEk6dphpatIKvr2ZqeDOxSWX8J3vwkHoktFrRincJMbKihHK8wjFC8KP0IxVkhMKkh6jGVUFEKAFnKKzlDaUSsk4zJC9a7HpHH7pcG_i0NqtT9jvau-cd7jt8PtqSSrifGy_8kcfYhgTtibWocMmZTY4j5sQ8bYdPtpxd2hLwe3XNIRo1v4cnTRmm_zF7ztHb8v718UjeXp-WC1un4gVTA2k4HWpGmigBNOYolLcOSZYBbxw3hbAFHBRNXUpG6hAGiWV47S2tpbAqbRijq6m3j6Gz9GnQW_CGLt8UvOSCgaCM5FTfErZGFKKvtF9bHcmfmtG9V6mnmTqLFMfZGqeITFBKYe7tY9_1f9QP0BTdhU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yang, H.</creator><creator>Yang, L. Y.</creator><creator>Abliz, A.</creator><creator>Wang, S. Y.</creator><creator>Zhao, F. J.</creator><creator>Zhang, M.</creator><creator>Li, J.</creator><creator>Li, H. B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage</title><author>Yang, H. ; Yang, L. Y. ; Abliz, A. ; Wang, S. Y. ; Zhao, F. J. ; Zhang, M. ; Li, J. ; Li, H. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-42b59f7f757afa4892dd1318724dec47197238fb56f7876a969d20bccb67206c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anodes</topic><topic>Bismuth</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Ion storage</topic><topic>Lithium ions</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Sodium-ion batteries</topic><topic>Three dimensional composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, H.</creatorcontrib><creatorcontrib>Yang, L. Y.</creatorcontrib><creatorcontrib>Abliz, A.</creatorcontrib><creatorcontrib>Wang, S. Y.</creatorcontrib><creatorcontrib>Zhao, F. J.</creatorcontrib><creatorcontrib>Zhang, M.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Li, H. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, H.</au><au>Yang, L. Y.</au><au>Abliz, A.</au><au>Wang, S. Y.</au><au>Zhao, F. J.</au><au>Zhang, M.</au><au>Li, J.</au><au>Li, H. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>1429</spage><epage>1437</epage><pages>1429-1437</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Recently, Bi element shows superior and stable performance as a battery anode material candidate for Li-ion and Na-ion storage. However, the challenge is the enormous volume change in the cycling procedure of alloy-type materials that could lead to pulverization of the electrode and gradual reduction in its capacitance. To counter the same, porous carbon and Sn were chosen as cushion layers for Bi. As a result, Bi and Sn embedded in ZIF-8-derived three-dimensional porous carbon (Bi/Sn@3D-C) composite was specifically designed as an electrode material for Li-ion and Na-ion storage. The electrochemical performance of Bi/Sn@3D-C, Bi@3D-C, and Sn@3D-C is compared. The discharge capacity of Bi/Sn@3D-C remains 632.0 mA h g
−1
(at a rate of 0.1 A g
−1
) after 120 cycles for Li-ion store, and after 50 cycles, the specific capacity of the electrode reaches 291.5 mA h g
−1
in sodium-ion battery.
Graphical abstract
Bi, Sn, and porous carbon composite—Bi/Sn@3D-C was designed as anode material for LIBs and SIBs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-021-03924-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2021-04, Vol.27 (4), p.1429-1437 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2503173213 |
source | SpringerLink Journals |
subjects | Anodes Bismuth Carbon Chemistry Chemistry and Materials Science Condensed Matter Physics Electrochemical analysis Electrochemistry Electrode materials Electrodes Energy Storage Ion storage Lithium ions Optical and Electronic Materials Original Paper Rechargeable batteries Renewable and Green Energy Sodium-ion batteries Three dimensional composites |
title | Bi and Sn particles embedded in ZIF-8-derived porous carbon as anode for lithium and sodium storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bi%20and%20Sn%20particles%20embedded%20in%20ZIF-8-derived%20porous%20carbon%20as%20anode%20for%20lithium%20and%20sodium%20storage&rft.jtitle=Ionics&rft.au=Yang,%20H.&rft.date=2021-04-01&rft.volume=27&rft.issue=4&rft.spage=1429&rft.epage=1437&rft.pages=1429-1437&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-021-03924-2&rft_dat=%3Cproquest_cross%3E2503173213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503173213&rft_id=info:pmid/&rfr_iscdi=true |