Granular fuzzy PID controller

In this paper an uncertain dynamical system is investigated in which the coefficients are as a class of fuzzy sets and the fuzzy derivative is considered as the granular derivative. Furthermore, the notions of granular second order derivative of a fuzzy function, fuzzy overshoot, fuzzy rise-time, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-04, Vol.167, p.114182, Article 114182
Hauptverfasser: Najariyan, Marzieh, Zhao, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114182
container_title Expert systems with applications
container_volume 167
creator Najariyan, Marzieh
Zhao, Yi
description In this paper an uncertain dynamical system is investigated in which the coefficients are as a class of fuzzy sets and the fuzzy derivative is considered as the granular derivative. Furthermore, the notions of granular second order derivative of a fuzzy function, fuzzy overshoot, fuzzy rise-time, and fuzzy peak-time are introduced. As a result, designing a class of PID controllers called granular Fuzzy PID (gr-FPID) controller is presented based on fuzzy mathematics. The gr-FPID consists of granular integral, granular derivative with fuzzy coefficients. Moreover, the Particle Swarm Optimization (PSO) algorithm is used to tune gr-FPID fuzzy coefficients. It is demonstrated that the gr-FPID controller can effectively control the temperature in a continuous stirred tank reactor in which the parameters are uncertain. •Presenting granular second order derivative of a fuzzy function.•Defining fuzzy overshoot, fuzzy rise time, and fuzzy peak time.•Presenting an approach for the linearization of a nonlinear model around a fuzzy operating point.•A new kind of fuzzy PID controller is designed (gr-FPID).•Explaining the process of PSO algorithm for tuning the fuzzy parameters of gr-FPID.
doi_str_mv 10.1016/j.eswa.2020.114182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503173004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417420309155</els_id><sourcerecordid>2503173004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-7b0128692ee1f110b4b95082addd18d1d697a52c201ad3834b24d4b1531def023</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gCAseO46k6RNCl5k1XVhQQ96DmkyhZbarkmr7D69XerZ08Dwf_8MH2PXCEsEzO7qJcUfu-TAxwVK1PyEzVArkWQqF6dsBnmqEolKnrOLGGsAVABqxm7WwbZDY8OiHA6H_eJt87hwXduHrmkoXLKz0jaRrv7mnH08P72vXpLt63qzetgmTnDdJ6oA5DrLORGWiFDIIk9Bc-u9R-3RZ7myKXcc0HqhhSy49LLAVKCnEriYs9updxe6r4Fib-puCO140vAUBCoBIMcUn1IudDEGKs0uVJ827A2COWowtTlqMEcNZtIwQvcTROP_3xUFE11FrSNfBXK98V31H_4LZ9FjKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503173004</pqid></control><display><type>article</type><title>Granular fuzzy PID controller</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Najariyan, Marzieh ; Zhao, Yi</creator><creatorcontrib>Najariyan, Marzieh ; Zhao, Yi</creatorcontrib><description>In this paper an uncertain dynamical system is investigated in which the coefficients are as a class of fuzzy sets and the fuzzy derivative is considered as the granular derivative. Furthermore, the notions of granular second order derivative of a fuzzy function, fuzzy overshoot, fuzzy rise-time, and fuzzy peak-time are introduced. As a result, designing a class of PID controllers called granular Fuzzy PID (gr-FPID) controller is presented based on fuzzy mathematics. The gr-FPID consists of granular integral, granular derivative with fuzzy coefficients. Moreover, the Particle Swarm Optimization (PSO) algorithm is used to tune gr-FPID fuzzy coefficients. It is demonstrated that the gr-FPID controller can effectively control the temperature in a continuous stirred tank reactor in which the parameters are uncertain. •Presenting granular second order derivative of a fuzzy function.•Defining fuzzy overshoot, fuzzy rise time, and fuzzy peak time.•Presenting an approach for the linearization of a nonlinear model around a fuzzy operating point.•A new kind of fuzzy PID controller is designed (gr-FPID).•Explaining the process of PSO algorithm for tuning the fuzzy parameters of gr-FPID.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2020.114182</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Coefficients ; Continuously stirred tank reactors ; Controllers ; Fuzzy control ; Fuzzy sets ; Granular second order derivative ; Horizontal membership functions ; Mathematical analysis ; Overshoot ; Parameter uncertainty ; Particle swarm optimization ; PID controller ; Proportional integral derivative ; PSO algorithm ; Rise-time</subject><ispartof>Expert systems with applications, 2021-04, Vol.167, p.114182, Article 114182</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-7b0128692ee1f110b4b95082addd18d1d697a52c201ad3834b24d4b1531def023</citedby><cites>FETCH-LOGICAL-c328t-7b0128692ee1f110b4b95082addd18d1d697a52c201ad3834b24d4b1531def023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417420309155$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Najariyan, Marzieh</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><title>Granular fuzzy PID controller</title><title>Expert systems with applications</title><description>In this paper an uncertain dynamical system is investigated in which the coefficients are as a class of fuzzy sets and the fuzzy derivative is considered as the granular derivative. Furthermore, the notions of granular second order derivative of a fuzzy function, fuzzy overshoot, fuzzy rise-time, and fuzzy peak-time are introduced. As a result, designing a class of PID controllers called granular Fuzzy PID (gr-FPID) controller is presented based on fuzzy mathematics. The gr-FPID consists of granular integral, granular derivative with fuzzy coefficients. Moreover, the Particle Swarm Optimization (PSO) algorithm is used to tune gr-FPID fuzzy coefficients. It is demonstrated that the gr-FPID controller can effectively control the temperature in a continuous stirred tank reactor in which the parameters are uncertain. •Presenting granular second order derivative of a fuzzy function.•Defining fuzzy overshoot, fuzzy rise time, and fuzzy peak time.•Presenting an approach for the linearization of a nonlinear model around a fuzzy operating point.•A new kind of fuzzy PID controller is designed (gr-FPID).•Explaining the process of PSO algorithm for tuning the fuzzy parameters of gr-FPID.</description><subject>Algorithms</subject><subject>Coefficients</subject><subject>Continuously stirred tank reactors</subject><subject>Controllers</subject><subject>Fuzzy control</subject><subject>Fuzzy sets</subject><subject>Granular second order derivative</subject><subject>Horizontal membership functions</subject><subject>Mathematical analysis</subject><subject>Overshoot</subject><subject>Parameter uncertainty</subject><subject>Particle swarm optimization</subject><subject>PID controller</subject><subject>Proportional integral derivative</subject><subject>PSO algorithm</subject><subject>Rise-time</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gCAseO46k6RNCl5k1XVhQQ96DmkyhZbarkmr7D69XerZ08Dwf_8MH2PXCEsEzO7qJcUfu-TAxwVK1PyEzVArkWQqF6dsBnmqEolKnrOLGGsAVABqxm7WwbZDY8OiHA6H_eJt87hwXduHrmkoXLKz0jaRrv7mnH08P72vXpLt63qzetgmTnDdJ6oA5DrLORGWiFDIIk9Bc-u9R-3RZ7myKXcc0HqhhSy49LLAVKCnEriYs9updxe6r4Fib-puCO140vAUBCoBIMcUn1IudDEGKs0uVJ827A2COWowtTlqMEcNZtIwQvcTROP_3xUFE11FrSNfBXK98V31H_4LZ9FjKA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Najariyan, Marzieh</creator><creator>Zhao, Yi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210401</creationdate><title>Granular fuzzy PID controller</title><author>Najariyan, Marzieh ; Zhao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-7b0128692ee1f110b4b95082addd18d1d697a52c201ad3834b24d4b1531def023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Coefficients</topic><topic>Continuously stirred tank reactors</topic><topic>Controllers</topic><topic>Fuzzy control</topic><topic>Fuzzy sets</topic><topic>Granular second order derivative</topic><topic>Horizontal membership functions</topic><topic>Mathematical analysis</topic><topic>Overshoot</topic><topic>Parameter uncertainty</topic><topic>Particle swarm optimization</topic><topic>PID controller</topic><topic>Proportional integral derivative</topic><topic>PSO algorithm</topic><topic>Rise-time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najariyan, Marzieh</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najariyan, Marzieh</au><au>Zhao, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granular fuzzy PID controller</atitle><jtitle>Expert systems with applications</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>167</volume><spage>114182</spage><pages>114182-</pages><artnum>114182</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>In this paper an uncertain dynamical system is investigated in which the coefficients are as a class of fuzzy sets and the fuzzy derivative is considered as the granular derivative. Furthermore, the notions of granular second order derivative of a fuzzy function, fuzzy overshoot, fuzzy rise-time, and fuzzy peak-time are introduced. As a result, designing a class of PID controllers called granular Fuzzy PID (gr-FPID) controller is presented based on fuzzy mathematics. The gr-FPID consists of granular integral, granular derivative with fuzzy coefficients. Moreover, the Particle Swarm Optimization (PSO) algorithm is used to tune gr-FPID fuzzy coefficients. It is demonstrated that the gr-FPID controller can effectively control the temperature in a continuous stirred tank reactor in which the parameters are uncertain. •Presenting granular second order derivative of a fuzzy function.•Defining fuzzy overshoot, fuzzy rise time, and fuzzy peak time.•Presenting an approach for the linearization of a nonlinear model around a fuzzy operating point.•A new kind of fuzzy PID controller is designed (gr-FPID).•Explaining the process of PSO algorithm for tuning the fuzzy parameters of gr-FPID.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2020.114182</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-04, Vol.167, p.114182, Article 114182
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2503173004
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Coefficients
Continuously stirred tank reactors
Controllers
Fuzzy control
Fuzzy sets
Granular second order derivative
Horizontal membership functions
Mathematical analysis
Overshoot
Parameter uncertainty
Particle swarm optimization
PID controller
Proportional integral derivative
PSO algorithm
Rise-time
title Granular fuzzy PID controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granular%20fuzzy%20PID%20controller&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Najariyan,%20Marzieh&rft.date=2021-04-01&rft.volume=167&rft.spage=114182&rft.pages=114182-&rft.artnum=114182&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2020.114182&rft_dat=%3Cproquest_cross%3E2503173004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503173004&rft_id=info:pmid/&rft_els_id=S0957417420309155&rfr_iscdi=true