Semantic-driven watermarking of relational textual databases

•Mark embedding through synonyms substitutions avoids to compromise data quality.•Controlling the number of times each mark is embedded contributes to high resiliency.•Multi-word textual attributes in relational data helps to protect their ownership.•Majority voting compensates lack of precision in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2021-04, Vol.167, p.114013, Article 114013
Hauptverfasser: Pérez Gort, Maikel Lázaro, Olliaro, Martina, Cortesi, Agostino, Feregrino Uribe, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114013
container_title Expert systems with applications
container_volume 167
creator Pérez Gort, Maikel Lázaro
Olliaro, Martina
Cortesi, Agostino
Feregrino Uribe, Claudia
description •Mark embedding through synonyms substitutions avoids to compromise data quality.•Controlling the number of times each mark is embedded contributes to high resiliency.•Multi-word textual attributes in relational data helps to protect their ownership.•Majority voting compensates lack of precision in word sense disambiguation algorithms. In relational database watermarking, the semantic consistency between the original database and the distorted one is a challenging issue which is disregarded by most watermarking proposals, due to the well-known assumption for which a small amount of errors in the watermarked database is tolerable. We propose a semantic-driven watermarking approach of relational textual databases, which marks multi-word textual attributes, exploiting the synonym substitution technique for text watermarking together with notions in semantic similarity analysis, and dealing with the semantic perturbations provoked by the watermark embedding. We show the effectiveness of our approach through an experimental evaluation, highlighting the resulting capacity, robustness and imperceptibility watermarking requirements. We also prove the resilience of our approach with respect to the random synonym substitution attack.
doi_str_mv 10.1016/j.eswa.2020.114013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2503171927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417420307867</els_id><sourcerecordid>2503171927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-a712a4825c8ca2b8c7567eb066d36ebf15de83af9eb0ca6686182d9b05bb94223</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4pzgR2I7Ui-o4iVV4gCcrY2zQQ5tUmy3hX-Pq3DmNNJoZjX7EXLNaMEok7d9geEABac8GaykTJyQGdNK5FLV4pTMaF2pvGSqPCcXIfSUMkWpmpHFK25giM7mrXd7HLIDRPQb8J9u-MjGLvO4hujGAdZZxO-4S9pChAYChkty1sE64NWfzsn7w_3b8ilfvTw-L-9WuRWKxxwU41BqXlltgTfaqkoqbKiUrZDYdKxqUQvo6uRZkFJLpnlbN7RqmrrkXMzJzXR368evHYZo-nHn06RgeEUFU6zmKqX4lLJ-DMFjZ7bepU9-DKPmSMn05kjJHCmZiVIqLaYSpv17h94E63Cw2DqPNpp2dP_VfwEegXAz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503171927</pqid></control><display><type>article</type><title>Semantic-driven watermarking of relational textual databases</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pérez Gort, Maikel Lázaro ; Olliaro, Martina ; Cortesi, Agostino ; Feregrino Uribe, Claudia</creator><creatorcontrib>Pérez Gort, Maikel Lázaro ; Olliaro, Martina ; Cortesi, Agostino ; Feregrino Uribe, Claudia</creatorcontrib><description>•Mark embedding through synonyms substitutions avoids to compromise data quality.•Controlling the number of times each mark is embedded contributes to high resiliency.•Multi-word textual attributes in relational data helps to protect their ownership.•Majority voting compensates lack of precision in word sense disambiguation algorithms. In relational database watermarking, the semantic consistency between the original database and the distorted one is a challenging issue which is disregarded by most watermarking proposals, due to the well-known assumption for which a small amount of errors in the watermarked database is tolerable. We propose a semantic-driven watermarking approach of relational textual databases, which marks multi-word textual attributes, exploiting the synonym substitution technique for text watermarking together with notions in semantic similarity analysis, and dealing with the semantic perturbations provoked by the watermark embedding. We show the effectiveness of our approach through an experimental evaluation, highlighting the resulting capacity, robustness and imperceptibility watermarking requirements. We also prove the resilience of our approach with respect to the random synonym substitution attack.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2020.114013</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Digital watermarking ; Perturbation ; Relational data bases ; Relational databases ; Semantic similarity analysis ; Semantics ; Substitutes ; Watermarking</subject><ispartof>Expert systems with applications, 2021-04, Vol.167, p.114013, Article 114013</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-a712a4825c8ca2b8c7567eb066d36ebf15de83af9eb0ca6686182d9b05bb94223</citedby><cites>FETCH-LOGICAL-c372t-a712a4825c8ca2b8c7567eb066d36ebf15de83af9eb0ca6686182d9b05bb94223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2020.114013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Pérez Gort, Maikel Lázaro</creatorcontrib><creatorcontrib>Olliaro, Martina</creatorcontrib><creatorcontrib>Cortesi, Agostino</creatorcontrib><creatorcontrib>Feregrino Uribe, Claudia</creatorcontrib><title>Semantic-driven watermarking of relational textual databases</title><title>Expert systems with applications</title><description>•Mark embedding through synonyms substitutions avoids to compromise data quality.•Controlling the number of times each mark is embedded contributes to high resiliency.•Multi-word textual attributes in relational data helps to protect their ownership.•Majority voting compensates lack of precision in word sense disambiguation algorithms. In relational database watermarking, the semantic consistency between the original database and the distorted one is a challenging issue which is disregarded by most watermarking proposals, due to the well-known assumption for which a small amount of errors in the watermarked database is tolerable. We propose a semantic-driven watermarking approach of relational textual databases, which marks multi-word textual attributes, exploiting the synonym substitution technique for text watermarking together with notions in semantic similarity analysis, and dealing with the semantic perturbations provoked by the watermark embedding. We show the effectiveness of our approach through an experimental evaluation, highlighting the resulting capacity, robustness and imperceptibility watermarking requirements. We also prove the resilience of our approach with respect to the random synonym substitution attack.</description><subject>Digital watermarking</subject><subject>Perturbation</subject><subject>Relational data bases</subject><subject>Relational databases</subject><subject>Semantic similarity analysis</subject><subject>Semantics</subject><subject>Substitutes</subject><subject>Watermarking</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4pzgR2I7Ui-o4iVV4gCcrY2zQQ5tUmy3hX-Pq3DmNNJoZjX7EXLNaMEok7d9geEABac8GaykTJyQGdNK5FLV4pTMaF2pvGSqPCcXIfSUMkWpmpHFK25giM7mrXd7HLIDRPQb8J9u-MjGLvO4hujGAdZZxO-4S9pChAYChkty1sE64NWfzsn7w_3b8ilfvTw-L-9WuRWKxxwU41BqXlltgTfaqkoqbKiUrZDYdKxqUQvo6uRZkFJLpnlbN7RqmrrkXMzJzXR368evHYZo-nHn06RgeEUFU6zmKqX4lLJ-DMFjZ7bepU9-DKPmSMn05kjJHCmZiVIqLaYSpv17h94E63Cw2DqPNpp2dP_VfwEegXAz</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Pérez Gort, Maikel Lázaro</creator><creator>Olliaro, Martina</creator><creator>Cortesi, Agostino</creator><creator>Feregrino Uribe, Claudia</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210401</creationdate><title>Semantic-driven watermarking of relational textual databases</title><author>Pérez Gort, Maikel Lázaro ; Olliaro, Martina ; Cortesi, Agostino ; Feregrino Uribe, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-a712a4825c8ca2b8c7567eb066d36ebf15de83af9eb0ca6686182d9b05bb94223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Digital watermarking</topic><topic>Perturbation</topic><topic>Relational data bases</topic><topic>Relational databases</topic><topic>Semantic similarity analysis</topic><topic>Semantics</topic><topic>Substitutes</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez Gort, Maikel Lázaro</creatorcontrib><creatorcontrib>Olliaro, Martina</creatorcontrib><creatorcontrib>Cortesi, Agostino</creatorcontrib><creatorcontrib>Feregrino Uribe, Claudia</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez Gort, Maikel Lázaro</au><au>Olliaro, Martina</au><au>Cortesi, Agostino</au><au>Feregrino Uribe, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic-driven watermarking of relational textual databases</atitle><jtitle>Expert systems with applications</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>167</volume><spage>114013</spage><pages>114013-</pages><artnum>114013</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Mark embedding through synonyms substitutions avoids to compromise data quality.•Controlling the number of times each mark is embedded contributes to high resiliency.•Multi-word textual attributes in relational data helps to protect their ownership.•Majority voting compensates lack of precision in word sense disambiguation algorithms. In relational database watermarking, the semantic consistency between the original database and the distorted one is a challenging issue which is disregarded by most watermarking proposals, due to the well-known assumption for which a small amount of errors in the watermarked database is tolerable. We propose a semantic-driven watermarking approach of relational textual databases, which marks multi-word textual attributes, exploiting the synonym substitution technique for text watermarking together with notions in semantic similarity analysis, and dealing with the semantic perturbations provoked by the watermark embedding. We show the effectiveness of our approach through an experimental evaluation, highlighting the resulting capacity, robustness and imperceptibility watermarking requirements. We also prove the resilience of our approach with respect to the random synonym substitution attack.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2020.114013</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2021-04, Vol.167, p.114013, Article 114013
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2503171927
source ScienceDirect Journals (5 years ago - present)
subjects Digital watermarking
Perturbation
Relational data bases
Relational databases
Semantic similarity analysis
Semantics
Substitutes
Watermarking
title Semantic-driven watermarking of relational textual databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic-driven%20watermarking%20of%20relational%20textual%20databases&rft.jtitle=Expert%20systems%20with%20applications&rft.au=P%C3%A9rez%20Gort,%20Maikel%20L%C3%A1zaro&rft.date=2021-04-01&rft.volume=167&rft.spage=114013&rft.pages=114013-&rft.artnum=114013&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2020.114013&rft_dat=%3Cproquest_cross%3E2503171927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503171927&rft_id=info:pmid/&rft_els_id=S0957417420307867&rfr_iscdi=true