THE INTERCHANGE PROCESS ON HIGH-DIMENSIONAL PRODUCTS

We resolve a long-standing conjecture of Wilson (Ann. Appl. Probab. 14 (2004) 274-325), reiterated by Oliveira (2016), asserting that the mixing time of the interchange process with unit edge rates on the n-dimensional hyper-cube is of order n. This follows from a sharp inequality established at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2021-02, Vol.31 (1), p.84-98
Hauptverfasser: Hermon, Jonathan, Salez, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We resolve a long-standing conjecture of Wilson (Ann. Appl. Probab. 14 (2004) 274-325), reiterated by Oliveira (2016), asserting that the mixing time of the interchange process with unit edge rates on the n-dimensional hyper-cube is of order n. This follows from a sharp inequality established at the level of Dirichlet forms, from which we also deduce that macroscopic cycles emerge in constant time, and that the log-Sobolev constant of the exclusion process is of order 1. Beyond the hypercube, our results apply to cartesian products of arbitrary graphs of fixed size, shedding light on a broad conjecture of Oliveira
ISSN:1050-5164
2168-8737
DOI:10.1214/20-AAP1583