Intrinsic Dimensionality of Microstructure Data
Quantitative treatment of microstructure data is the first step in establishing the structure–property linkages using materials informatics. However, the microstructure data are often huge and require dimensionality reduction techniques to use it in a computationally meaningful way. In this paper, w...
Gespeichert in:
Veröffentlicht in: | Integrating materials and manufacturing innovation 2021-03, Vol.10 (1), p.44-57 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | Integrating materials and manufacturing innovation |
container_volume | 10 |
creator | Thakre, Sanket Harshith, Vishnu Kanjarla, Anand K. |
description | Quantitative treatment of microstructure data is the first step in establishing the structure–property linkages using materials informatics. However, the microstructure data are often huge and require dimensionality reduction techniques to use it in a computationally meaningful way. In this paper, we present a simple and unique approach to estimate the intrinsic dimensionality of microstructure data. By using principal component analysis (PCA) and multi-dimensional scaling (MDS), we demonstrate the effects of global and local metrics on various classes of 2D and 3D synthetic two-phase microstructure data on the intrinsic dimensionality (ID). Further, we establish the influence of the phase fraction and the inherent stochastic nature of the microstructure on ID estimation. It is observed that 2-point spatial correlation statistics greatly influence intrinsic dimensionality. A change in the intrinsic dimensionality is observed with an increase in the volume fraction of the phase. Considerable variation is observed in metric values for MDS compared to PCA, with an increase in dimensions. We also provide a reduced-order phase fraction benchmark of intrinsic dimensionality (ID) for high dimensional microstructure data. The presented framework is based on a simple and effective trade-off between property preservation and complexity reduction. |
doi_str_mv | 10.1007/s40192-021-00200-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502866593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502866593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-540133210a2d260e5133a4f23f02fa31ccbc7a675874bd75fa72eb9622b368fb3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWGq_gKcFz7EvL7vJ5iit_6DiRc8hmyaypd2tSfbQfnpTV_Tm6c2DmWH4EXLN4JYByHksgSmkgIwCIAA9npEJMsWpkhLPf7UoL8ksxg0AMF4yUbMJmT93KbRdbG2xbHcui74z2zYdit4XL60NfUxhsGkIrliaZK7IhTfb6GY_d0reH-7fFk909fr4vLhbUcuZSrTKkzhHBgbXKMBV-TOlR-4BveHM2sZKI2RVy7JZy8obia5RArHhovYNn5KbsXcf-s_BxaQ3_RDytKixAqyFqBTPLhxdp50xOK_3od2ZcNAM9ImNHtnozEZ_s9HHHOJjKGZz9-HCX_U_qS-k8mXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502866593</pqid></control><display><type>article</type><title>Intrinsic Dimensionality of Microstructure Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thakre, Sanket ; Harshith, Vishnu ; Kanjarla, Anand K.</creator><creatorcontrib>Thakre, Sanket ; Harshith, Vishnu ; Kanjarla, Anand K.</creatorcontrib><description>Quantitative treatment of microstructure data is the first step in establishing the structure–property linkages using materials informatics. However, the microstructure data are often huge and require dimensionality reduction techniques to use it in a computationally meaningful way. In this paper, we present a simple and unique approach to estimate the intrinsic dimensionality of microstructure data. By using principal component analysis (PCA) and multi-dimensional scaling (MDS), we demonstrate the effects of global and local metrics on various classes of 2D and 3D synthetic two-phase microstructure data on the intrinsic dimensionality (ID). Further, we establish the influence of the phase fraction and the inherent stochastic nature of the microstructure on ID estimation. It is observed that 2-point spatial correlation statistics greatly influence intrinsic dimensionality. A change in the intrinsic dimensionality is observed with an increase in the volume fraction of the phase. Considerable variation is observed in metric values for MDS compared to PCA, with an increase in dimensions. We also provide a reduced-order phase fraction benchmark of intrinsic dimensionality (ID) for high dimensional microstructure data. The presented framework is based on a simple and effective trade-off between property preservation and complexity reduction.</description><identifier>ISSN: 2193-9764</identifier><identifier>EISSN: 2193-9772</identifier><identifier>DOI: 10.1007/s40192-021-00200-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Materials information ; Materials Science ; Metallic Materials ; Microstructure ; Nanotechnology ; Principal components analysis ; Reduction ; Structural Materials ; Surfaces and Interfaces ; Technical Article ; Thin Films</subject><ispartof>Integrating materials and manufacturing innovation, 2021-03, Vol.10 (1), p.44-57</ispartof><rights>The Minerals, Metals & Materials Society 2021</rights><rights>The Minerals, Metals & Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-540133210a2d260e5133a4f23f02fa31ccbc7a675874bd75fa72eb9622b368fb3</citedby><cites>FETCH-LOGICAL-c319t-540133210a2d260e5133a4f23f02fa31ccbc7a675874bd75fa72eb9622b368fb3</cites><orcidid>0000-0002-7288-2415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40192-021-00200-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40192-021-00200-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Thakre, Sanket</creatorcontrib><creatorcontrib>Harshith, Vishnu</creatorcontrib><creatorcontrib>Kanjarla, Anand K.</creatorcontrib><title>Intrinsic Dimensionality of Microstructure Data</title><title>Integrating materials and manufacturing innovation</title><addtitle>Integr Mater Manuf Innov</addtitle><description>Quantitative treatment of microstructure data is the first step in establishing the structure–property linkages using materials informatics. However, the microstructure data are often huge and require dimensionality reduction techniques to use it in a computationally meaningful way. In this paper, we present a simple and unique approach to estimate the intrinsic dimensionality of microstructure data. By using principal component analysis (PCA) and multi-dimensional scaling (MDS), we demonstrate the effects of global and local metrics on various classes of 2D and 3D synthetic two-phase microstructure data on the intrinsic dimensionality (ID). Further, we establish the influence of the phase fraction and the inherent stochastic nature of the microstructure on ID estimation. It is observed that 2-point spatial correlation statistics greatly influence intrinsic dimensionality. A change in the intrinsic dimensionality is observed with an increase in the volume fraction of the phase. Considerable variation is observed in metric values for MDS compared to PCA, with an increase in dimensions. We also provide a reduced-order phase fraction benchmark of intrinsic dimensionality (ID) for high dimensional microstructure data. The presented framework is based on a simple and effective trade-off between property preservation and complexity reduction.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Materials information</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Principal components analysis</subject><subject>Reduction</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Technical Article</subject><subject>Thin Films</subject><issn>2193-9764</issn><issn>2193-9772</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWGq_gKcFz7EvL7vJ5iit_6DiRc8hmyaypd2tSfbQfnpTV_Tm6c2DmWH4EXLN4JYByHksgSmkgIwCIAA9npEJMsWpkhLPf7UoL8ksxg0AMF4yUbMJmT93KbRdbG2xbHcui74z2zYdit4XL60NfUxhsGkIrliaZK7IhTfb6GY_d0reH-7fFk909fr4vLhbUcuZSrTKkzhHBgbXKMBV-TOlR-4BveHM2sZKI2RVy7JZy8obia5RArHhovYNn5KbsXcf-s_BxaQ3_RDytKixAqyFqBTPLhxdp50xOK_3od2ZcNAM9ImNHtnozEZ_s9HHHOJjKGZz9-HCX_U_qS-k8mXI</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Thakre, Sanket</creator><creator>Harshith, Vishnu</creator><creator>Kanjarla, Anand K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7288-2415</orcidid></search><sort><creationdate>20210301</creationdate><title>Intrinsic Dimensionality of Microstructure Data</title><author>Thakre, Sanket ; Harshith, Vishnu ; Kanjarla, Anand K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-540133210a2d260e5133a4f23f02fa31ccbc7a675874bd75fa72eb9622b368fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Materials information</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Principal components analysis</topic><topic>Reduction</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Technical Article</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thakre, Sanket</creatorcontrib><creatorcontrib>Harshith, Vishnu</creatorcontrib><creatorcontrib>Kanjarla, Anand K.</creatorcontrib><collection>CrossRef</collection><jtitle>Integrating materials and manufacturing innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thakre, Sanket</au><au>Harshith, Vishnu</au><au>Kanjarla, Anand K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Dimensionality of Microstructure Data</atitle><jtitle>Integrating materials and manufacturing innovation</jtitle><stitle>Integr Mater Manuf Innov</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>10</volume><issue>1</issue><spage>44</spage><epage>57</epage><pages>44-57</pages><issn>2193-9764</issn><eissn>2193-9772</eissn><abstract>Quantitative treatment of microstructure data is the first step in establishing the structure–property linkages using materials informatics. However, the microstructure data are often huge and require dimensionality reduction techniques to use it in a computationally meaningful way. In this paper, we present a simple and unique approach to estimate the intrinsic dimensionality of microstructure data. By using principal component analysis (PCA) and multi-dimensional scaling (MDS), we demonstrate the effects of global and local metrics on various classes of 2D and 3D synthetic two-phase microstructure data on the intrinsic dimensionality (ID). Further, we establish the influence of the phase fraction and the inherent stochastic nature of the microstructure on ID estimation. It is observed that 2-point spatial correlation statistics greatly influence intrinsic dimensionality. A change in the intrinsic dimensionality is observed with an increase in the volume fraction of the phase. Considerable variation is observed in metric values for MDS compared to PCA, with an increase in dimensions. We also provide a reduced-order phase fraction benchmark of intrinsic dimensionality (ID) for high dimensional microstructure data. The presented framework is based on a simple and effective trade-off between property preservation and complexity reduction.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40192-021-00200-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7288-2415</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-9764 |
ispartof | Integrating materials and manufacturing innovation, 2021-03, Vol.10 (1), p.44-57 |
issn | 2193-9764 2193-9772 |
language | eng |
recordid | cdi_proquest_journals_2502866593 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Materials information Materials Science Metallic Materials Microstructure Nanotechnology Principal components analysis Reduction Structural Materials Surfaces and Interfaces Technical Article Thin Films |
title | Intrinsic Dimensionality of Microstructure Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Dimensionality%20of%20Microstructure%20Data&rft.jtitle=Integrating%20materials%20and%20manufacturing%20innovation&rft.au=Thakre,%20Sanket&rft.date=2021-03-01&rft.volume=10&rft.issue=1&rft.spage=44&rft.epage=57&rft.pages=44-57&rft.issn=2193-9764&rft.eissn=2193-9772&rft_id=info:doi/10.1007/s40192-021-00200-z&rft_dat=%3Cproquest_cross%3E2502866593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502866593&rft_id=info:pmid/&rfr_iscdi=true |