Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors

Lanthanum orthophosphate (LaPO 4 ) and La 0.95− x Ce 0.05 Mn x PO 4 ( x = 0.00, 0.03, 0.10) phosphors were synthesized by a simple and cost-efficient co-precipitation method and the formation of LaPO 4 nanorods with a monoclinic P21/n crystal structure was observed. X-ray diffraction pattern analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-04, Vol.50 (4), p.2137-2147
Hauptverfasser: AitMellal, O., Oufni, L., Messous, M. Y., Neatu, F., Florea, M., Neatu, S., Rostas, A. M., Secu, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2147
container_issue 4
container_start_page 2137
container_title Journal of electronic materials
container_volume 50
creator AitMellal, O.
Oufni, L.
Messous, M. Y.
Neatu, F.
Florea, M.
Neatu, S.
Rostas, A. M.
Secu, M.
description Lanthanum orthophosphate (LaPO 4 ) and La 0.95− x Ce 0.05 Mn x PO 4 ( x = 0.00, 0.03, 0.10) phosphors were synthesized by a simple and cost-efficient co-precipitation method and the formation of LaPO 4 nanorods with a monoclinic P21/n crystal structure was observed. X-ray diffraction pattern analysis indicated a slight distortion of the LaPO 4 crystalline structure and an increase of the lattice strain as a consequence of the Mn 2+ and Ce 3+ dopants incorporation in the host matrix. Scanning electron microscopy revealed that the microstructure of all powders consists of agglomerations of nanorods, which are around 17 ± 3 nm in diameter and length ranging from 100 nm to 300 nm. Electron paramagnetic resonance measurements have indicated the presence of Mn 2+ in isolated species, but also as agglomerates. Ce 3+ and Mn 2+ doping of LaPO 4 resulted also in a decrease of the band gap up to 4.70 eV compared to the un-doped sample. Because of an energy transfer effect from Ce 3+ to Mn 2+ ions, green emission of Mn 2+ ions at around 550 nm was observed upon 275 nm excitation.
doi_str_mv 10.1007/s11664-020-08678-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502568274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502568274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-2ddd6fabb62525bb4e552e1f463eca03c1e6a17c07f96a59f535b0d4c03b577c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCxxI7-d4epX60UGlBBW8hm03aLXWzJruC_97VFbx5mjm8zzvDg9AlgWsCoKaJECk5BgoYcqlyrI7QiAjOMMnl6zEaAZMEC8rEKTpLaQ9ABMnJCC2e2tjZtovmkJm6zNZNW9l-X9YfLrXV1rRVqFMWfDZ3bDJ9rOkE34bGldnKbNY82-xCanYhpnN04s0huYvfOUYv93fP8wVerR-W85sVtpTPWkzLspTeFIWkgoqi4E4I6ojnkjlrgFnipCHKgvIzacTMCyYKKLkFVgilLBujq6G3ieG963_U-9DFuj-pqQAqZE4V71N0SNkYUorO6yZWbyZ-agL625gejOnemP4xplUPsQFKfbjeuvhX_Q_1BdVzbRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502568274</pqid></control><display><type>article</type><title>Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors</title><source>SpringerLink</source><creator>AitMellal, O. ; Oufni, L. ; Messous, M. Y. ; Neatu, F. ; Florea, M. ; Neatu, S. ; Rostas, A. M. ; Secu, M.</creator><creatorcontrib>AitMellal, O. ; Oufni, L. ; Messous, M. Y. ; Neatu, F. ; Florea, M. ; Neatu, S. ; Rostas, A. M. ; Secu, M.</creatorcontrib><description>Lanthanum orthophosphate (LaPO 4 ) and La 0.95− x Ce 0.05 Mn x PO 4 ( x = 0.00, 0.03, 0.10) phosphors were synthesized by a simple and cost-efficient co-precipitation method and the formation of LaPO 4 nanorods with a monoclinic P21/n crystal structure was observed. X-ray diffraction pattern analysis indicated a slight distortion of the LaPO 4 crystalline structure and an increase of the lattice strain as a consequence of the Mn 2+ and Ce 3+ dopants incorporation in the host matrix. Scanning electron microscopy revealed that the microstructure of all powders consists of agglomerations of nanorods, which are around 17 ± 3 nm in diameter and length ranging from 100 nm to 300 nm. Electron paramagnetic resonance measurements have indicated the presence of Mn 2+ in isolated species, but also as agglomerates. Ce 3+ and Mn 2+ doping of LaPO 4 resulted also in a decrease of the band gap up to 4.70 eV compared to the un-doped sample. Because of an energy transfer effect from Ce 3+ to Mn 2+ ions, green emission of Mn 2+ ions at around 550 nm was observed upon 275 nm excitation.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08678-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cerium ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Diameters ; Diffraction patterns ; Electron paramagnetic resonance ; Electronics and Microelectronics ; Energy ; Energy transfer ; Fourier transforms ; Instrumentation ; Lanthanum ; Lattice strain ; Manganese ions ; Materials Science ; Nanorods ; Optical and Electronic Materials ; Original Research Article ; Pattern analysis ; Phosphors ; Solid State Physics ; Spectrum analysis</subject><ispartof>Journal of electronic materials, 2021-04, Vol.50 (4), p.2137-2147</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-2ddd6fabb62525bb4e552e1f463eca03c1e6a17c07f96a59f535b0d4c03b577c3</citedby><cites>FETCH-LOGICAL-c249t-2ddd6fabb62525bb4e552e1f463eca03c1e6a17c07f96a59f535b0d4c03b577c3</cites><orcidid>0000-0002-8462-7905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-08678-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-08678-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>AitMellal, O.</creatorcontrib><creatorcontrib>Oufni, L.</creatorcontrib><creatorcontrib>Messous, M. Y.</creatorcontrib><creatorcontrib>Neatu, F.</creatorcontrib><creatorcontrib>Florea, M.</creatorcontrib><creatorcontrib>Neatu, S.</creatorcontrib><creatorcontrib>Rostas, A. M.</creatorcontrib><creatorcontrib>Secu, M.</creatorcontrib><title>Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Lanthanum orthophosphate (LaPO 4 ) and La 0.95− x Ce 0.05 Mn x PO 4 ( x = 0.00, 0.03, 0.10) phosphors were synthesized by a simple and cost-efficient co-precipitation method and the formation of LaPO 4 nanorods with a monoclinic P21/n crystal structure was observed. X-ray diffraction pattern analysis indicated a slight distortion of the LaPO 4 crystalline structure and an increase of the lattice strain as a consequence of the Mn 2+ and Ce 3+ dopants incorporation in the host matrix. Scanning electron microscopy revealed that the microstructure of all powders consists of agglomerations of nanorods, which are around 17 ± 3 nm in diameter and length ranging from 100 nm to 300 nm. Electron paramagnetic resonance measurements have indicated the presence of Mn 2+ in isolated species, but also as agglomerates. Ce 3+ and Mn 2+ doping of LaPO 4 resulted also in a decrease of the band gap up to 4.70 eV compared to the un-doped sample. Because of an energy transfer effect from Ce 3+ to Mn 2+ ions, green emission of Mn 2+ ions at around 550 nm was observed upon 275 nm excitation.</description><subject>Cerium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Diameters</subject><subject>Diffraction patterns</subject><subject>Electron paramagnetic resonance</subject><subject>Electronics and Microelectronics</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Fourier transforms</subject><subject>Instrumentation</subject><subject>Lanthanum</subject><subject>Lattice strain</subject><subject>Manganese ions</subject><subject>Materials Science</subject><subject>Nanorods</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Pattern analysis</subject><subject>Phosphors</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOCxxI7-d4epX60UGlBBW8hm03aLXWzJruC_97VFbx5mjm8zzvDg9AlgWsCoKaJECk5BgoYcqlyrI7QiAjOMMnl6zEaAZMEC8rEKTpLaQ9ABMnJCC2e2tjZtovmkJm6zNZNW9l-X9YfLrXV1rRVqFMWfDZ3bDJ9rOkE34bGldnKbNY82-xCanYhpnN04s0huYvfOUYv93fP8wVerR-W85sVtpTPWkzLspTeFIWkgoqi4E4I6ojnkjlrgFnipCHKgvIzacTMCyYKKLkFVgilLBujq6G3ieG963_U-9DFuj-pqQAqZE4V71N0SNkYUorO6yZWbyZ-agL625gejOnemP4xplUPsQFKfbjeuvhX_Q_1BdVzbRE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>AitMellal, O.</creator><creator>Oufni, L.</creator><creator>Messous, M. Y.</creator><creator>Neatu, F.</creator><creator>Florea, M.</creator><creator>Neatu, S.</creator><creator>Rostas, A. M.</creator><creator>Secu, M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0002-8462-7905</orcidid></search><sort><creationdate>20210401</creationdate><title>Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors</title><author>AitMellal, O. ; Oufni, L. ; Messous, M. Y. ; Neatu, F. ; Florea, M. ; Neatu, S. ; Rostas, A. M. ; Secu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-2ddd6fabb62525bb4e552e1f463eca03c1e6a17c07f96a59f535b0d4c03b577c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cerium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Diameters</topic><topic>Diffraction patterns</topic><topic>Electron paramagnetic resonance</topic><topic>Electronics and Microelectronics</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Fourier transforms</topic><topic>Instrumentation</topic><topic>Lanthanum</topic><topic>Lattice strain</topic><topic>Manganese ions</topic><topic>Materials Science</topic><topic>Nanorods</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Pattern analysis</topic><topic>Phosphors</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AitMellal, O.</creatorcontrib><creatorcontrib>Oufni, L.</creatorcontrib><creatorcontrib>Messous, M. Y.</creatorcontrib><creatorcontrib>Neatu, F.</creatorcontrib><creatorcontrib>Florea, M.</creatorcontrib><creatorcontrib>Neatu, S.</creatorcontrib><creatorcontrib>Rostas, A. M.</creatorcontrib><creatorcontrib>Secu, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AitMellal, O.</au><au>Oufni, L.</au><au>Messous, M. Y.</au><au>Neatu, F.</au><au>Florea, M.</au><au>Neatu, S.</au><au>Rostas, A. M.</au><au>Secu, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>50</volume><issue>4</issue><spage>2137</spage><epage>2147</epage><pages>2137-2147</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Lanthanum orthophosphate (LaPO 4 ) and La 0.95− x Ce 0.05 Mn x PO 4 ( x = 0.00, 0.03, 0.10) phosphors were synthesized by a simple and cost-efficient co-precipitation method and the formation of LaPO 4 nanorods with a monoclinic P21/n crystal structure was observed. X-ray diffraction pattern analysis indicated a slight distortion of the LaPO 4 crystalline structure and an increase of the lattice strain as a consequence of the Mn 2+ and Ce 3+ dopants incorporation in the host matrix. Scanning electron microscopy revealed that the microstructure of all powders consists of agglomerations of nanorods, which are around 17 ± 3 nm in diameter and length ranging from 100 nm to 300 nm. Electron paramagnetic resonance measurements have indicated the presence of Mn 2+ in isolated species, but also as agglomerates. Ce 3+ and Mn 2+ doping of LaPO 4 resulted also in a decrease of the band gap up to 4.70 eV compared to the un-doped sample. Because of an energy transfer effect from Ce 3+ to Mn 2+ ions, green emission of Mn 2+ ions at around 550 nm was observed upon 275 nm excitation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08678-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8462-7905</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-04, Vol.50 (4), p.2137-2147
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2502568274
source SpringerLink
subjects Cerium
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Diameters
Diffraction patterns
Electron paramagnetic resonance
Electronics and Microelectronics
Energy
Energy transfer
Fourier transforms
Instrumentation
Lanthanum
Lattice strain
Manganese ions
Materials Science
Nanorods
Optical and Electronic Materials
Original Research Article
Pattern analysis
Phosphors
Solid State Physics
Spectrum analysis
title Structural and Optical Investigations of Ce3+/Mn2+-Doped LaPO4 Phosphors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Optical%20Investigations%20of%20Ce3+/Mn2+-Doped%20LaPO4%20Phosphors&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=AitMellal,%20O.&rft.date=2021-04-01&rft.volume=50&rft.issue=4&rft.spage=2137&rft.epage=2147&rft.pages=2137-2147&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08678-7&rft_dat=%3Cproquest_cross%3E2502568274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502568274&rft_id=info:pmid/&rfr_iscdi=true