Reflux temperature-dependent zinc cobaltite nanostructures for asymmetric supercapacitors
Engineering of binary oxide material properties has attracted researchers due to their advance and synergistic application in energy and environment research. Thus, substantial efforts are made for exploring novel synthesis approaches for morphological variations, achieving porous network and high s...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-03, Vol.32 (5), p.5859-5869 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5869 |
---|---|
container_issue | 5 |
container_start_page | 5859 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Kamble, G. P. Kashale, A. A. Kolekar, S. S. Chen, I.-W. P. Sathe, B. R. Ghule, A. V. |
description | Engineering of binary oxide material properties has attracted researchers due to their advance and synergistic application in energy and environment research. Thus, substantial efforts are made for exploring novel synthesis approaches for morphological variations, achieving porous network and high surface area enabling fast ion diffusion and charge transfer, particularly required for supercapacitor applications. With this motivation, the present work demonstrates the temperature-dependent growth of ZnCo
2
O
4
nanostructures onto flexible stainless-steel mesh (FSSM) substrate via reflux condensation approach and investigating it as a supercapacitor electrode. The ZnCo
2
O
4
nanorods/FSSM prepared at 120 °C exhibit a higher specific capacitance of 315 F g
−1
at 2 mA cm
−2
employing 6 M KOH electrolyte. A solid-state ZnCo
2
O
4
nanorod (positive electrode)//FeCo
2
O
4
nanosheet (negative electrode) asymmetric supercapacitor (ASC) device with PVA-KOH gel as an electrolyte is also fabricated. The ASC device operated at a potential of 1.4 V demonstrates a specific capacitance of 108.4 F g
−1
at 6 mA cm
−2
. The device delivers a high energy density of 25.45 Wh kg
−1
at a power density of 3620 W kg
−1
and remarkable cyclic stability with 77% capacitance retention over 3000 cycles. |
doi_str_mv | 10.1007/s10854-021-05306-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2502567559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502567559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-f6b532b4b4756ab5df2af6f3ad9813f3a383f595f0c191f91e1d6202f47ba1613</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoOI6-gKuC6-iXpF_aLmXwDwYEUdBVSNNEOvTPJGUcn96OFdy5uptz74VDyDmDSwaQXQUGOaYUOKOAAiTdHpAFw0zQNOevh2QBBWY0Rc6PyUkIGwCQqcgX5O3Jumb8TKJtB-t1HL2llR1sV9kuJl91ZxLTl7qJdbRJp7s-RD-aPRYS1_tEh13b2uhrk4RxWjB60KaOvQ-n5MjpJtiz31ySl9ub59U9XT_ePayu19QIzCN1skTBy7RMM5S6xMpx7aQTuipyJqYUuXBYoAPDCuYKZlklOXCXZqVmkokluZh3B99_jDZEtelH302XiiNwlBliMVF8pozvQ_DWqcHXrfY7xUDtFapZoZoUqh-FajuVxFwKE9y9W_83_U_rG8JKdxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502567559</pqid></control><display><type>article</type><title>Reflux temperature-dependent zinc cobaltite nanostructures for asymmetric supercapacitors</title><source>SpringerLink Journals</source><creator>Kamble, G. P. ; Kashale, A. A. ; Kolekar, S. S. ; Chen, I.-W. P. ; Sathe, B. R. ; Ghule, A. V.</creator><creatorcontrib>Kamble, G. P. ; Kashale, A. A. ; Kolekar, S. S. ; Chen, I.-W. P. ; Sathe, B. R. ; Ghule, A. V.</creatorcontrib><description>Engineering of binary oxide material properties has attracted researchers due to their advance and synergistic application in energy and environment research. Thus, substantial efforts are made for exploring novel synthesis approaches for morphological variations, achieving porous network and high surface area enabling fast ion diffusion and charge transfer, particularly required for supercapacitor applications. With this motivation, the present work demonstrates the temperature-dependent growth of ZnCo
2
O
4
nanostructures onto flexible stainless-steel mesh (FSSM) substrate via reflux condensation approach and investigating it as a supercapacitor electrode. The ZnCo
2
O
4
nanorods/FSSM prepared at 120 °C exhibit a higher specific capacitance of 315 F g
−1
at 2 mA cm
−2
employing 6 M KOH electrolyte. A solid-state ZnCo
2
O
4
nanorod (positive electrode)//FeCo
2
O
4
nanosheet (negative electrode) asymmetric supercapacitor (ASC) device with PVA-KOH gel as an electrolyte is also fabricated. The ASC device operated at a potential of 1.4 V demonstrates a specific capacitance of 108.4 F g
−1
at 6 mA cm
−2
. The device delivers a high energy density of 25.45 Wh kg
−1
at a power density of 3620 W kg
−1
and remarkable cyclic stability with 77% capacitance retention over 3000 cycles.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-05306-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Capacitance ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Condensates ; Diffusion rate ; Electrodes ; Electrolytes ; Flux density ; Ion diffusion ; Material properties ; Materials Science ; Nanorods ; Nanostructure ; Optical and Electronic Materials ; Stainless steels ; Substrates ; Supercapacitors ; Temperature dependence</subject><ispartof>Journal of materials science. Materials in electronics, 2021-03, Vol.32 (5), p.5859-5869</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-f6b532b4b4756ab5df2af6f3ad9813f3a383f595f0c191f91e1d6202f47ba1613</citedby><cites>FETCH-LOGICAL-c358t-f6b532b4b4756ab5df2af6f3ad9813f3a383f595f0c191f91e1d6202f47ba1613</cites><orcidid>0000-0001-6295-0763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-05306-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-05306-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kamble, G. P.</creatorcontrib><creatorcontrib>Kashale, A. A.</creatorcontrib><creatorcontrib>Kolekar, S. S.</creatorcontrib><creatorcontrib>Chen, I.-W. P.</creatorcontrib><creatorcontrib>Sathe, B. R.</creatorcontrib><creatorcontrib>Ghule, A. V.</creatorcontrib><title>Reflux temperature-dependent zinc cobaltite nanostructures for asymmetric supercapacitors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Engineering of binary oxide material properties has attracted researchers due to their advance and synergistic application in energy and environment research. Thus, substantial efforts are made for exploring novel synthesis approaches for morphological variations, achieving porous network and high surface area enabling fast ion diffusion and charge transfer, particularly required for supercapacitor applications. With this motivation, the present work demonstrates the temperature-dependent growth of ZnCo
2
O
4
nanostructures onto flexible stainless-steel mesh (FSSM) substrate via reflux condensation approach and investigating it as a supercapacitor electrode. The ZnCo
2
O
4
nanorods/FSSM prepared at 120 °C exhibit a higher specific capacitance of 315 F g
−1
at 2 mA cm
−2
employing 6 M KOH electrolyte. A solid-state ZnCo
2
O
4
nanorod (positive electrode)//FeCo
2
O
4
nanosheet (negative electrode) asymmetric supercapacitor (ASC) device with PVA-KOH gel as an electrolyte is also fabricated. The ASC device operated at a potential of 1.4 V demonstrates a specific capacitance of 108.4 F g
−1
at 6 mA cm
−2
. The device delivers a high energy density of 25.45 Wh kg
−1
at a power density of 3620 W kg
−1
and remarkable cyclic stability with 77% capacitance retention over 3000 cycles.</description><subject>Asymmetry</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Condensates</subject><subject>Diffusion rate</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Ion diffusion</subject><subject>Material properties</subject><subject>Materials Science</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Optical and Electronic Materials</subject><subject>Stainless steels</subject><subject>Substrates</subject><subject>Supercapacitors</subject><subject>Temperature dependence</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KxDAYRYMoOI6-gKuC6-iXpF_aLmXwDwYEUdBVSNNEOvTPJGUcn96OFdy5uptz74VDyDmDSwaQXQUGOaYUOKOAAiTdHpAFw0zQNOevh2QBBWY0Rc6PyUkIGwCQqcgX5O3Jumb8TKJtB-t1HL2llR1sV9kuJl91ZxLTl7qJdbRJp7s-RD-aPRYS1_tEh13b2uhrk4RxWjB60KaOvQ-n5MjpJtiz31ySl9ub59U9XT_ePayu19QIzCN1skTBy7RMM5S6xMpx7aQTuipyJqYUuXBYoAPDCuYKZlklOXCXZqVmkokluZh3B99_jDZEtelH302XiiNwlBliMVF8pozvQ_DWqcHXrfY7xUDtFapZoZoUqh-FajuVxFwKE9y9W_83_U_rG8JKdxs</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Kamble, G. P.</creator><creator>Kashale, A. A.</creator><creator>Kolekar, S. S.</creator><creator>Chen, I.-W. P.</creator><creator>Sathe, B. R.</creator><creator>Ghule, A. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6295-0763</orcidid></search><sort><creationdate>20210301</creationdate><title>Reflux temperature-dependent zinc cobaltite nanostructures for asymmetric supercapacitors</title><author>Kamble, G. P. ; Kashale, A. A. ; Kolekar, S. S. ; Chen, I.-W. P. ; Sathe, B. R. ; Ghule, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-f6b532b4b4756ab5df2af6f3ad9813f3a383f595f0c191f91e1d6202f47ba1613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Condensates</topic><topic>Diffusion rate</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Ion diffusion</topic><topic>Material properties</topic><topic>Materials Science</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Optical and Electronic Materials</topic><topic>Stainless steels</topic><topic>Substrates</topic><topic>Supercapacitors</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamble, G. P.</creatorcontrib><creatorcontrib>Kashale, A. A.</creatorcontrib><creatorcontrib>Kolekar, S. S.</creatorcontrib><creatorcontrib>Chen, I.-W. P.</creatorcontrib><creatorcontrib>Sathe, B. R.</creatorcontrib><creatorcontrib>Ghule, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamble, G. P.</au><au>Kashale, A. A.</au><au>Kolekar, S. S.</au><au>Chen, I.-W. P.</au><au>Sathe, B. R.</au><au>Ghule, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflux temperature-dependent zinc cobaltite nanostructures for asymmetric supercapacitors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-03-01</date><risdate>2021</risdate><volume>32</volume><issue>5</issue><spage>5859</spage><epage>5869</epage><pages>5859-5869</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Engineering of binary oxide material properties has attracted researchers due to their advance and synergistic application in energy and environment research. Thus, substantial efforts are made for exploring novel synthesis approaches for morphological variations, achieving porous network and high surface area enabling fast ion diffusion and charge transfer, particularly required for supercapacitor applications. With this motivation, the present work demonstrates the temperature-dependent growth of ZnCo
2
O
4
nanostructures onto flexible stainless-steel mesh (FSSM) substrate via reflux condensation approach and investigating it as a supercapacitor electrode. The ZnCo
2
O
4
nanorods/FSSM prepared at 120 °C exhibit a higher specific capacitance of 315 F g
−1
at 2 mA cm
−2
employing 6 M KOH electrolyte. A solid-state ZnCo
2
O
4
nanorod (positive electrode)//FeCo
2
O
4
nanosheet (negative electrode) asymmetric supercapacitor (ASC) device with PVA-KOH gel as an electrolyte is also fabricated. The ASC device operated at a potential of 1.4 V demonstrates a specific capacitance of 108.4 F g
−1
at 6 mA cm
−2
. The device delivers a high energy density of 25.45 Wh kg
−1
at a power density of 3620 W kg
−1
and remarkable cyclic stability with 77% capacitance retention over 3000 cycles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-05306-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6295-0763</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-03, Vol.32 (5), p.5859-5869 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2502567559 |
source | SpringerLink Journals |
subjects | Asymmetry Capacitance Characterization and Evaluation of Materials Charge transfer Chemistry and Materials Science Condensates Diffusion rate Electrodes Electrolytes Flux density Ion diffusion Material properties Materials Science Nanorods Nanostructure Optical and Electronic Materials Stainless steels Substrates Supercapacitors Temperature dependence |
title | Reflux temperature-dependent zinc cobaltite nanostructures for asymmetric supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflux%20temperature-dependent%20zinc%20cobaltite%20nanostructures%20for%20asymmetric%20supercapacitors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kamble,%20G.%20P.&rft.date=2021-03-01&rft.volume=32&rft.issue=5&rft.spage=5859&rft.epage=5869&rft.pages=5859-5869&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-05306-w&rft_dat=%3Cproquest_cross%3E2502567559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502567559&rft_id=info:pmid/&rfr_iscdi=true |